Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Invertebr Pathol ; 197: 107886, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646414

RESUMEN

The microsporidian diversity catalogued so far has resulted in the development of several taxonomic groups, one of which is the Enterocytozoonida - a group of generalist 'ultimate opportunists', which infect many fished and aquacultured animals, as well as a broad suite of host taxa, including humans. In this study, we provide phylogenetic, ultrastructural, developmental, and pathological evidence for the creation of a new genus and species to hold a microsporidian parasite of the Jonah crab, Cancer borealis. Cancer borealis represents a species of commercial interest and has become the target of a recently developed fishery on the USA and Canadian Atlantic coast. This species was found to harbour a microsporidian parasite that develops in the cytoplasm of alpha and beta cells of the hepatopancreas. We retrieved a 937 bp fragment of the parasite SSU region, alongside developmental and ultrastructural data that suggests this species is âˆ¼ 87 % similar to Parahepatospora carcini and develops in a similar manner in direct association with the host cell cytoplasm. The mature spores are ovoid in shape and measure 1.48 ± 0.15 µm (SD) in length and 1.00 ± 0.11 µm (SD) in width. Phylogenetically, the new parasite clades in the Enterocytozoonida on the same branch as P. carcini. We provide a new genus and species to hold the parasite: Pseudohepatospora borealis n. gen. n. sp. (Microsporidia: Enterocytozoonida) and explore the likelihood that this species may fit into the Hepatoporidae family.


Asunto(s)
Braquiuros , Microsporidios , Neoplasias , Humanos , Animales , Braquiuros/parasitología , Filogenia , Canadá , Microsporidios/genética
2.
J Invertebr Pathol ; 198: 107930, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148998

RESUMEN

Subtropical Florida blue crabs, Callinectes sapidus, exhibit differing life history traits compared to their temperate counterparts, likely influencing symbiont infection dynamics. Little information exists for Florida C. sapidus symbiont profiles, their distribution among various habitats, and influence on crab condition. Using histopathology, genomics, and transmission electron microscopy, we describe the first symbiont profiles for Florida C. sapidus occupying freshwater to marine habitats. Twelve symbiont groups were identified from 409 crabs including ciliophorans, digenean, microsporidian, Haplosporidia, Hematodinium sp., Nematoda, filamentous bacteria, gregarine, Callinectes sapidus nudivirus, Octolasmis sp., Cambarincola sp., and putative microcell. Overall, 78% of C. sapidus were documented with one or more symbiont groups demonstrating high infection rates in wild populations. Environmental variables water temperature and salinity explained 48% of the variation in symbiont groups among Florida habitats, and salinity was positively correlated with C. sapidus symbiont diversity. This suggests freshwater C. sapidus possess fewer symbionts and represent healthier individuals compared to saltwater populations. Crab condition was examined using the reflex action mortality predictor (RAMP) to determine if reflex impairment could be linked to symbiont prevalence. Symbionts were found positively correlated with crab condition, and impaired crabs were more likely to host symbionts, demonstrating symbiont inclusion may boost predictive ability of the RAMP application. The microsporidian symbiont group had a particularly strong effect on C. sapidus reflex response, and impairment was on average 1.57 times higher compared to all other symbiont groups. Our findings demonstrate the importance of considering full symbiont profiles and their associations with a spatially and temporally variable environment to fully assess C. sapidus population health.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Florida , Temperatura , Salinidad , Dinoflagelados/fisiología
3.
J Invertebr Pathol ; 192: 107784, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35659607

RESUMEN

White feces syndrome (WFS) in cultivated shrimp is characterized by white shrimp midguts (intestines) and white fecal strings that float as mats on pond surfaces. The etiology of WFS is complex, but one type called EHP-WFS is associated with the microsporidian Enterocytozoon hepatopenaei (EHP). The hepatopancreas (HP), midgut and fecal strings of EHP-WFS shrimp exhibit massive quantities of EHP spores together with mixed, unidentified bacteria. In EHP-WFS ponds, some EHP-infected shrimp show white midguts (WG) and produce white feces while other EHP-infected shrimp in the same pond show grossly normal midguts (NG) and produce no white feces. We hypothesized that comparison of the microbial flora between WG and NG shrimp would reveal probable combinations of microbes significantly associated with EHP-WFS. To test this, we selected a Penaeus vannamei cultivation pond exhibiting severe WFS and used microscopic and microbial profiling analyses to compare WG and NG samples. Histologically, EHP was confirmed in the HP and midgut of both WG and NG shrimp, but EHP burdens were higher and EHP tissue damage was more severe in WG shrimp. Further, intestinal microbiomes in WG shrimp were less diverse and had higher abundance of bacteria from the genera Vibrio and Propionigenium. Propionigenium burden in the HP of WG shrimp (9364 copies/100 ng DNA) was significantly higher (P = 1.1 × 10-5) than in NG shrimp (12 copies/100 ng DNA). These findings supported our hypothesis by revealing two candidate bacterial genera that should be tested in combination with EHP as potential component causes of EHP-WFS in P. vannamei.


Asunto(s)
Enterocytozoon , Microsporidios , Penaeidae , Propionigenium , Vibrio , Animales , ADN , Enterocytozoon/genética , Heces/microbiología , Microsporidios/genética , Penaeidae/microbiología , Reacción en Cadena de la Polimerasa , Vibrio/genética
4.
J Invertebr Pathol ; 191: 107768, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35569512

RESUMEN

A new microsporidian parasite, Naidispora caidianensis n. gen. n. sp. was found in coelomocytes of oligochaete Branchiura sowerbyi Beddard, 1892 from Wuhan city, Hubei Province, China. Opaque, hypertrophied coelomocytes (0.17-0.24 mm in diameter) depicted clinical signs of infection. Electron microscopy revealed a microsporidian with monokaryotic life stages. Rounded uninucleate meronts subsequently transformed into multinucleate merogonial plasmodia with masses of electron-dense projections on their plasma membrane. Electron-dense sporogonial plasmodia separated into uninucleate sporonts through rosette-like budding, and further developed into sporoblasts, enclosed by a sporophorous vesicle. Uninucleate mature spores were pyriform, measured 4.1 ± 0.1 (3.9-4.3) µm × 2.1 ± 0.07 (1.9-2.2) µm (average ± SE, range, n = 50), and contained a mushroom-like anchoring disk, bipartite polaroplast, electron-lucent posterior vacuole, trilaminar spore wall and 12-14 turns of an isofilar polar filament arranged in 2-3 ranks. The 1542 bp sequence from B. soweryi showed the highest similarity (below 80 %) with Nematocenator marisprofundi (accession number: JX463178). SSU rRNA gene-based phylogenetic analysis demonstrated that the novel taxon formed an independent clade from known microsporidian parasites. Based on the ultrastructural features and SSU rRNA gene sequence, we propose the establishment of a novel genus (Naidispora n. gen.) and species (Naidispora caidianensis n. sp.) to contain this parasite.


Asunto(s)
Microsporidios , Oligoquetos , Animales , China , Filogenia
5.
Dis Aquat Organ ; 149: 47-51, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510820

RESUMEN

Invasive non-native amphipods (Crustacea) are becoming a model system in which to explore the impact and diversity of invasive parasites-parasites that are carried along an invasion route with their hosts. Gammarus varsoviensis is a freshwater amphipod species that has a recently explored invasion history. We provide a histopathological survey for a putatively invasive non-native population of this amphipod, identifying 8 symbiotic groups: Acanthocephala, Rotifera, Digenea, ciliated protozoa, Haplosporidia, Microsporidia, 'Candidatus Aquirickettsiella', and a putative nudivirus, at various prevalence. Our survey indicates that the parasites have no sex bias and that each has the potential to be carried in either sex along an invasion route. We discuss the pathology and prevalence of the above symbiotic groups and whether those that are parasitic may pose a risk if G. varsoviensis were to carry them to novel locations.


Asunto(s)
Acantocéfalos , Anfípodos , Microsporidios , Parásitos , Anfípodos/parasitología , Animales , Interacciones Huésped-Parásitos
6.
Dis Aquat Organ ; 148: 167-181, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35445664

RESUMEN

The velvet swimming crab Necora puber has been fished in Ireland since the early 1980s and contributes significant income to smaller fishing vessels. From 2016 onwards, reduced landings have been reported. We undertook a full pathological investigation of crabs from fishing grounds at 3 sites on the west (Galway), southwest (Castletownbere) and east (Howth) coasts of Ireland. Histopathology, transmission electron microscopy and molecular taxonomic and phylogenetic analyses showed high prevalence and infection level of Paramarteilia canceri, previously only reported from the edible crab Cancer pagurus. This study provides the first molecular data for P. canceri, and shows its phylogenetic position in the order Paramyxida (Rhizaria). Other parasites and symbionts detected in the crabs were also noted, including widespread but low co-infection with Hematodinium sp. and a microsporidian consistent with the Ameson and Nadelspora genera. This is the first histological record of Hematodinium sp. in velvet crabs from Ireland. Four N. puber individuals across 2 sites were co-infected by P. canceri and Hematodinium sp. At one site, 3 velvet crabs infected with P. canceri were co-infected with the first microsporidian recorded from this host; the microsporidian 18S sequence was almost identical to Ameson pulvis, known to infect European shore crabs Carcinus maenas. The study provides a comprehensive phylogenetic analysis of this and all other available Ameson and Nadelspora 18S sequences. Together, these findings provide a baseline for further investigations of N. puber populations along the coast of Ireland.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Irlanda/epidemiología , Filogenia , Prevalencia , Natación
7.
J Invertebr Pathol ; 184: 107652, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34358554

RESUMEN

Say's mud crab, Dyspanopeus sayi (Brachyura: Panopeidae) is a native shallow subtidal and inter-tidal inhabitant of the Atlantic coastline of North America and an invasive species in the Mediterranean and Black Seas. Little is known about the microparasites of this host and the broader Panopeidae. We describe a novel microsporidian parasite infecting the musculature of D. sayi from Malagash, Nova Scotia (Canada), at a prevalence of 7%. Histopathology and molecular diagnostics were used to describe pathology and parasite phylogenetics, respectively. Based on SSU rDNA gene sequencing we propose that the microsporidian requires establishment of a new genus (Panopeispora n. gen.) and species (Panopeispora mellora n. sp.), due to significant differences to closest known taxa (e.g. Facilispora margolisi [81% similarity] and Thelohania butleri [80% similarity]), residing in Clade V of the Microsporidia. Archived, wax-embedded histological material was re-processed for transmission electron microscopy to obtain preliminary details of its intracellular development cycle and ultrastructure within the host musculature. The discovery of this pathogen is discussed with relevance to microsporidian taxonomy and the potential for achieving ultrastructural data from archived material.


Asunto(s)
Braquiuros/parasitología , Microsporidios/clasificación , Animales , Nueva Escocia
8.
J Invertebr Pathol ; 186: 107387, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32330478

RESUMEN

With rapid increases in the global shrimp aquaculture sector, a focus on animal health during production becomes ever more important. Animal productivity is intimately linked to health, and the gut microbiome is becoming increasingly recognised as an important driver of cultivation success. The microbes that colonise the gut, commonly referred to as the gut microbiota or the gut microbiome, interact with their host and contribute to a number of key host processes, including digestion and immunity. Gut microbiome manipulation therefore represents an attractive proposition for aquaculture and has been suggested as a possible alternative to the use of broad-spectrum antibiotics in the management of disease, which is a major limitation of growth in this sector. Microbiota supplementation has also demonstrated positive effects on growth and survival of several different commercial species, including shrimp. Development of appropriate gut supplements, however, requires prior knowledge of the host microbiome. Little is known about the gut microbiota of the aquatic invertebrates, but penaeid shrimp are perhaps more studied than most. Here, we review current knowledge of information reported on the shrimp gut microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of Proteobacteria within this community. We discuss involvement of the microbiome in the regulation of shrimp health and disease and describe how the gut microbiota changes with the introduction of several economically important shrimp pathogens. Finally, we explore evidence of microbiome supplementation and consider its role in the future of penaeid shrimp production.


Asunto(s)
Alimentación Animal/análisis , Suplementos Dietéticos , Microbioma Gastrointestinal , Penaeidae/microbiología , Proteobacteria/química , Animales , Acuicultura , Dieta
9.
J Invertebr Pathol ; 186: 107458, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32882232

RESUMEN

Disease is a major limiting factor in the global production of cultivated shrimp. The microsporidian parasite Enterocytozoon hepatopenaei (EHP) was formally characterized in 2009 as a rare infection of the black tiger shrimp Penaeus monodon. It remained relatively unstudied until mid-2010, after which infection with EHP became increasingly common in the Pacific whiteleg shrimp Penaeus vannamei, by then the most common shrimp species farmed in Asia. EHP infects the hepatopancreas of its host, causing hepatopancreatic microsporidiosis (HPM), a condition that has been associated with slow growth of the host in aquaculture settings. Unlike other infectious disease agents that have caused economic losses in global shrimp aquaculture, EHP has proven more challenging because too little is still known about its environmental reservoirs and modes of transmission during the industrial shrimp production process. This review summarizes our current knowledge of the EHP life cycle and the molecular strategies that it employs as an obligate intracellular parasite. It also provides an analysis of available and new methodologies for diagnosis since most of the current literature on EHP focuses on that topic. We summarize current knowledge of EHP infection and transmission dynamics and currently recommended, practical control measures that are being applied to limit its negative impact on shrimp cultivation. We also point out the major gaps in knowledge that urgently need to be bridged in order to improve control measures.


Asunto(s)
Enterocytozoon/fisiología , Hepatopáncreas/parasitología , Rasgos de la Historia de Vida , Penaeidae/parasitología , Animales , Acuicultura
10.
J Invertebr Pathol ; 184: 107595, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33878331

RESUMEN

Invasive crayfish and the introduction of non-native diseases pose a significant risk for the conservation of endangered, white-clawed crayfish (Austropotamobius pallipes). Continued pollution of waterways is also of concern for native species and may be linked with crayfish disease dynamics. We explore whether crayfish species or environmental quality are predictors of infection presence and prevalence in native A. pallipes and invasive signal crayfish (Pacifastacus leniusculus). We use a seven-year dataset of histology records, and a field survey comparing the presence and prevalence of infectious agents in three isolated A. pallipes populations; three isolated P. leniusculus populations, and three populations where the two species had overlapped in the past. We note a lower diversity of parasites (Simpson's Index) in P. leniusculus ('Pacifastacus leniusculus Bacilliform Virus' - PlBV) (n = 1 parasite) relative to native A. pallipes (n = 4 parasites), which host Thelohania contejeani, 'Austropotamobius pallipes bacilliform virus' (ApBV), Psorospermium haeckeli and Branchiobdella astaci, at the sites studied. The infectious group present in both species was an intranuclear bacilliform virus of the hepatopancreas. The prevalence of A. astaci in A. pallipes populations was higher in more polluted water bodies, which may reflect an effect of water quality, or may be due to increased chance of transmission from nearby P. leniusculus, a species commonly found in poor quality habitats.


Asunto(s)
Astacoidea/microbiología , Astacoidea/parasitología , Especies Introducidas , Animales , Astacoidea/virología , Reino Unido
11.
Dis Aquat Organ ; 136(1): 63-78, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31575835

RESUMEN

Dikerogammarus haemobaphes is a non-native amphipod in UK freshwaters. Studies have identified this species as a low-impact invader in the UK, relative to its cousin Dikerogammarus villosus. It has been suggested that regulation by symbionts (such as Microsporidia) could explain this difference in impact. The effect of parasitism on D. haemobaphes is largely unknown. This was explored herein using 2 behavioural assays measuring activity and aggregation. First, D. haemobaphes were screened histologically post-assay, identifying 2 novel viruses (D. haemobaphes bi-facies-like virus [DhbflV], D. haemobaphes bacilliform virus [DhBV]), Cucumispora ornata (Microsporidia), Apicomplexa, and Digenea, which could alter host behaviour. DhBV infection burden increased host activity, and C. ornata infection reduced host activity. Second, native invertebrates were collected from the invasion site at Carlton Brook, UK, and tested for the presence of C. ornata. PCR screening identified that Gammarus pulex and other native invertebrates were positive for C. ornata. The host range of this parasite, and its impact on host survival, was additionally explored using D. haemobaphes, D. villosus, and G. pulex in a laboratory trial. D. haemobaphes and G. pulex became infected by C. ornata, which also lowered survival rate. D. villosus did not become infected. A PCR protocol for DhbflV was also applied to D. haemobaphes after the survival trial, associating this virus with decreased host survival. In conclusion, D. haemobaphes has a complex relationship with parasites in the UK environment. C. ornata likely regulates populations by decreasing host survival and activity, but despite this benefit, the parasite threatens susceptible native wildlife.


Asunto(s)
Anfípodos/parasitología , Anfípodos/virología , Parásitos/patogenicidad , Animales , Interacciones Huésped-Parásitos , Microsporidios , Trematodos , Reino Unido
12.
J Eukaryot Microbiol ; 65(6): 773-782, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29603494

RESUMEN

Some protists with microsporidian-like cell biological characters, including Mitosporidium, Paramicrosporidium, and Nucleophaga, have SSU rRNA gene sequences that are much less divergent than canonical Microsporidia. We analysed the phylogenetic placement and environmental diversity of microsporidian-like lineages that group near the base of the fungal radiation and show that they group in a clade with metchnikovellids and canonical microsporidians, to the exclusion of the clade including Rozella, in line with what is currently known of their morphology and cell biology. These results show that the phylogenetic scope of Microsporidia has been greatly underestimated. We propose that much of the lineage diversity previously thought to be cryptomycotan/rozellid is actually microsporidian, offering new insights into the evolution of the highly specialized parasitism of canonical Microsporidia. This insight has important implications for our understanding of opisthokont evolution and ecology, and is important for accurate interpretation of environmental diversity. Our analyses also demonstrate that many opisthosporidian (aphelid+rozellid+microsporidian) SSU V4 OTUs from Neotropical forest soils group with the short-branching Microsporidia, consistent with the abundance of their protist and arthropod hosts in soils. This novel diversity of Microsporidia provides a unique opportunity to investigate the evolutionary origins of a highly specialized clade of major animal parasites.


Asunto(s)
Líquenes/clasificación , Líquenes/genética , Microsporidios/clasificación , Microsporidios/genética , Filogenia , Animales , Artrópodos/microbiología , Biodiversidad , Quitridiomicetos/genética , ADN de Hongos/genética , Ecología , Eucariontes , Evolución Molecular , Flagelos , Genoma Fúngico , Líquenes/citología , Microsporidios/citología , Microbiología del Suelo
13.
J Invertebr Pathol ; 154: 109-116, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29555081

RESUMEN

A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the same as the 'Haliphthoros' sp. NJM 0034 strain (AB178865.1) previously isolated from abalone (imported from South Australia to Japan). However, in accordance with other published SSU-based phylogenies, the NJM 0034 isolate did not group with other known Haliphthoros species in our Maximum Likelihood and Bayesian phylogenies. Instead, the strain formed an orphan lineage, diverging before the separation of the Saprolegniales and Pythiales. Based upon 28S large subunit (LSU) phylogeny, our own isolate and the previously unidentified 0034 strain are both identical to the abalone pathogen Halioticida noduliformans. The genus shares morphological similarities with Haliphthoros and Halocrusticida and forms a clade with these in LSU phylogenies. Here, we confirm the first recorded occurrence of H. noduliformans in European lobsters and associate its presence with pathology of the egg mass, likely leading to reduced fecundity.


Asunto(s)
Nephropidae/parasitología , Oomicetos/aislamiento & purificación , Animales , Teorema de Bayes , Branquias/parasitología , Funciones de Verosimilitud , Oomicetos/clasificación , Óvulo/parasitología , Filogenia
14.
J Invertebr Pathol ; 156: 41-53, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30017949

RESUMEN

Invasive and non-native species can pose risks to vulnerable ecosystems by co-introducing bacterial pathogens. Alternatively, co-introduced bacterial pathogens may regulate invasive population size and invasive traits. We describe a novel candidate genus and species of bacteria ('Candidatus Aquirickettsiella gammari') found to infect Gammarus fossarum, from its native range in Poland. The bacterium develops intracellularly within the haemocytes and cells of the musculature, hepatopancreas, connective tissues, nervous system and gonad of the host. The developmental cycle of 'Candidatus Aquirickettsiella gammari' includes an elementary body (496.73 nm ±â€¯37.56 nm in length, and 176.89 nm ±â€¯36.29 nm in width), an elliptical, condensed spherical stage (737.61 nm ±â€¯44.51 nm in length and 300.07 nm ±â€¯44.02 nm in width), a divisional stage, and a spherical initial body (1397.59 nm ±â€¯21.26 nm in diameter). We provide a partial genome for 'Candidatus Aquirickettsiella gammari', which clades phylogenetically alongside environmental 16S rRNA sequences from aquatic habitats, and bacterial symbionts from aquatic isopods (Asellus aquaticus), grouping separately from the Rickettsiella, a genus that includes bacterial pathogens of terrestrial insects and isopods. Increased understanding of the diversity of symbionts carried by G. fossarum identifies those that might regulate host population size, or those that could pose a risk to native species in the invasive range. Identification of 'Candidatus Aquirickettsiella gammari' and its potential for adaptation as a biological control agent is explored.


Asunto(s)
Anfípodos/microbiología , Coxiellaceae/fisiología , Animales , Coxiellaceae/clasificación , Gammaproteobacteria/clasificación , Gammaproteobacteria/fisiología , Filogenia , ARN Ribosómico 16S/genética
15.
J Invertebr Pathol ; 153: 195-202, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29548517

RESUMEN

Crangon crangon bacilliform virus (CcBV) was first discovered in 2004 in European brown shrimp (Crangon crangon) caught along the English coast. This study describes a duplex PCR assay developed for the detection of CcBV, based on amplification of the lef-8 gene (211 bp) of CcBV and the E75 gene (105 bp) of C. crangon as an internal amplification control. The lef-8 and E75 primer pairs were designed based on preliminary genome sequencing information of the virus and transcriptomic data available for C. crangon, respectively. Sequencing of the resulting amplicons confirmed the specificity of this PCR assay and sequence analysis of the lef-8 fragment revealed amino acid identity percentages ranging between 31 and 42% with members of the Nudiviridae, proposing that CcBV may reside within this family. Finally, the duplex PCR assay was applied to samples of C. crangon hepatopancreas tissue collected along the Belgian coast to screen for the presence of CcBV. The prevalence of CcBV averaged 87%, which is comparable to previous reports of high prevalence, based upon histological analysis, in shrimp collected along the English coast. Development of a specific and sensitive PCR assay to detect CcBV will provide a useful tool for future aquaculture and research programs involving C. crangon.


Asunto(s)
Crangonidae/virología , Virus ADN , Reacción en Cadena de la Polimerasa/métodos , Animales , ADN Viral/análisis
16.
Dis Aquat Organ ; 128(2): 147-168, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29733028

RESUMEN

The green crab Carcinus maenas is an invader on the Atlantic coast of Canada and the USA. In these locations, crab populations have facilitated the development of a legal fishery in which C. maenas is caught and sold, mainly for use as bait to capture economically important crustaceans such as American lobster Homarus americanus. The paucity of knowledge on the symbionts of invasive C. maenas in Canada and their potential for transfer to lobsters poses a potential risk of unintended transmission. We carried out a histological survey for symbionts of C. maenas from their native range in Northern Europe (in the UK and Faroe Islands), and invasive range in Atlantic Canada. In total, 19 separate symbiotic associations were identified from C. maenas collected from 27 sites. These included metazoan parasites (nematodes, Profilicollis botulus, Sacculina carcini, Microphallidae, ectoparasitic crustaceans), microbial eukaryotes (ciliates, Hematodinium sp., Haplosporidium littoralis, Ameson pulvis, Parahepatospora carcini, gregarines, amoebae), bacteria (Rickettsia-like organism, milky disease), and viral pathogens (parvo-like virus, herpes-like virus, iridovirus, Carcinus maenas bacilliform virus and a haemocyte-infecting rod-shaped virus). Hematodinium sp. were not observed in the Canadian population; however, parasites such as Trematoda and Acanthocephala were present in all countries despite their complex, multi-species lifecycles. Some pathogens may pose a risk of transmission to other decapods and native fauna via the use of this host in the bait industry, such as the discovery of a virus resembling the previously described white spot syndrome virus (WSSV), B-virus and 'rod-shaped virus' (RV-CM) and amoebae, which have previously been found to cause disease in aquaculture (e.g. Salmo salar) and fisheries species (e.g. H. americanus).


Asunto(s)
Bacterias/aislamiento & purificación , Braquiuros/parasitología , Crustáceos/fisiología , Parásitos/fisiología , Simbiosis , Animales , Fenómenos Fisiológicos Bacterianos , Braquiuros/microbiología , Interacciones Huésped-Parásitos , Especies Introducidas , Nueva Escocia , Parásitos/clasificación , Reino Unido
17.
Environ Microbiol ; 19(5): 2077-2089, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28345194

RESUMEN

Glycolysis and oxidative phosphorylation are the fundamental pathways of ATP generation in eukaryotes. Yet in microsporidia, endoparasitic fungi living at the limits of cellular streamlining, oxidative phosphorylation has been lost: energy is obtained directly from the host or, during the dispersive spore stage, via glycolysis. It was therefore surprising when the first sequenced genome from the Enterocytozoonidae - a major family of human and animal-infecting microsporidians - appeared to have lost genes for glycolysis. Here, we sequence and analyse genomes from additional members of this family, shedding new light on their unusual biology. Our survey includes the genome of Enterocytozoon hepatopenaei, a major aquacultural parasite currently causing substantial economic losses in shrimp farming, and Enterospora canceri, a pathogen that lives exclusively inside epithelial cell nuclei of its crab host. Our analysis of gene content across the clade suggests that Ent. canceri's adaptation to intranuclear life is underpinned by the expansion of transporter families. We demonstrate that this entire lineage of pathogens has lost glycolysis and, uniquely amongst eukaryotes, lacks any obvious intrinsic means of generating energy. Our study provides an important resource for the investigation of host-pathogen interactions and reductive evolution in one of the most medically and economically important microsporidian lineages.


Asunto(s)
Enterocytozoon/metabolismo , Genoma de Protozoos/genética , Glucólisis/genética , Hexoquinasa/genética , Interacciones Huésped-Parásitos/fisiología , Fosforilación Oxidativa , Penaeidae/parasitología , Animales , Secuencia de Bases , Evolución Biológica , Enterocytozoon/genética , Enterocytozoon/patogenicidad , Humanos , Microsporidiosis/parasitología , Filogenia , Análisis de Secuencia de ADN
18.
J Invertebr Pathol ; 143: 124-134, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27993617

RESUMEN

Parahepatospora carcini n. gen. n. sp., is a novel microsporidian parasite discovered infecting the cytoplasm of epithelial cells of the hepatopancreas of a single Carcinus maenas specimen. The crab was sampled from within its invasive range in Atlantic Canada (Nova Scotia). Histopathology and transmission electron microscopy were used to show the development of the parasite within a simple interfacial membrane, culminating in the formation of unikaryotic spores with 5-6 turns of an isofilar polar filament. Formation of a multinucleate meront (>12 nuclei observed) preceded thickening and invagination of the plasmodial membrane, and in many cases, formation of spore extrusion precursors (polar filaments, anchoring disk) prior to complete separation of pre-sporoblasts from the sporogonial plasmodium. This developmental feature is intermediate between the Enterocytozoonidae (formation of spore extrusion precursors within the sporont plasmodium) and all other Microsporidia (formation of spore extrusion precursors after separation of sporont from the sporont plasmodium). SSU rRNA-based gene phylogenies place P. carcini within microsporidian Clade IV, between the Enterocytozoonidae and the so-called Enterocytospora-clade, which includes Enterocytospora artemiae and Globulispora mitoportans. Both of these groups contain gut-infecting microsporidians of aquatic invertebrates, fish and humans. According to morphological and phylogenetic characters, we propose that P. carcini occupies a basal position to the Enterocytozoonidae. We discuss the discovery of this parasite from a taxonomic perspective and consider its origins and presence within a high profile invasive host on the Atlantic Canadian coastline.


Asunto(s)
Braquiuros/parasitología , Microsporidia no Clasificados/clasificación , Microsporidia no Clasificados/genética , Animales , Microscopía Electrónica de Transmisión , Microsporidia no Clasificados/ultraestructura , Filogenia , Reacción en Cadena de la Polimerasa
20.
BMC Genomics ; 16: 458, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26076827

RESUMEN

BACKGROUND: The European shore crab, Carcinus maenas, is used widely in biomonitoring, ecotoxicology and for studies into host-pathogen interactions. It is also an important invasive species in numerous global locations. However, the genomic resources for this organism are still sparse, limiting research progress in these fields. To address this resource shortfall we produced a C. maenas transcriptome, enabled by the progress in next-generation sequencing technologies, and applied this to assemble information on the innate immune system in this species. RESULTS: We isolated and pooled RNA for twelve different tissues and organs from C. maenas individuals and sequenced the RNA using next generation sequencing on an Illumina HiSeq 2500 platform. After de novo assembly a transcriptome was generated encompassing 212,427 transcripts (153,699 loci). The transcripts were filtered, annotated and characterised using a variety of tools (including BLAST, MEGAN and RSEM) and databases (including NCBI, Gene Ontology and KEGG). There were differential patterns of expression for between 1,223 and 2,741 transcripts across tissues and organs with over-represented Gene Ontology terms relating to their specific function. Based on sequence homology to immune system components in other organisms, we show both the presence of transcripts for a series of known pathogen recognition receptors and response proteins that form part of the innate immune system, and transcripts representing the RNAi, Toll-like receptor signalling, IMD and JAK/STAT pathways. CONCLUSIONS: We have produced an assembled transcriptome for C. maenas that provides a significant molecular resource for wide ranging studies in this species. Analysis of the transcriptome has revealed the presence of a series of known targets and functional pathways that form part of their innate immune system and illustrate tissue specific differences in their expression patterns.


Asunto(s)
Braquiuros/genética , Inmunidad Innata/genética , Transducción de Señal/genética , Transcriptoma/genética , Animales , Bases de Datos Genéticas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anotación de Secuencia Molecular/métodos , Análisis de Secuencia de ARN/métodos , Receptores Toll-Like/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA