Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Med ; 11(11): e1001755, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25386878

RESUMEN

BACKGROUND: FK506 binding protein 51 (FKBP51) is an Hsp90 co-chaperone and regulator of the glucocorticoid receptor, and consequently of stress physiology. Clinical studies suggest a genetic link between FKBP51 and antidepressant response in mood disorders; however, the underlying mechanisms remain elusive. The objective of this study was to elucidate the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy. METHODS AND FINDINGS: Established cell lines, primary neural cells, human blood cells of healthy individuals and patients with depression, and mice were treated with antidepressants. Mice were tested for several neuroendocrine and behavioral parameters. Protein interactions and autophagic pathway activity were mainly evaluated by co-immunoprecipitation and Western blots. We first show that the effects of acute antidepressant treatment on behavior are abolished in FKBP51 knockout (51KO) mice. Autophagic markers, such as the autophagy initiator Beclin1, were increased following acute antidepressant treatment in brains from wild-type, but not 51KO, animals. FKBP51 binds to Beclin1, changes decisive protein interactions and phosphorylation of Beclin1, and triggers autophagic pathways. Antidepressants and FKBP51 exhibited synergistic effects on these pathways. Using chronic social defeat as a depression-relevant stress model in combination with chronic paroxetine (PAR) treatment revealed that the stress response, as well as the effects of antidepressants on behavior and autophagic markers, depends on FKBP51. In human blood cells of healthy individuals, FKBP51 levels correlated with the potential of antidepressants to induce autophagic pathways. Importantly, the clinical antidepressant response of patients with depression (n = 51) could be predicted by the antidepressant response of autophagic markers in patient-derived peripheral blood lymphocytes cultivated and treated ex vivo (Beclin1/amitriptyline: r = 0.572, p = 0.003; Beclin1/PAR: r = 0.569, p = 0.004; Beclin1/fluoxetine: r = 0.454, p = 0.026; pAkt/amitriptyline: r =  -0.416, p = 0.006; pAkt/PAR: r =  -0.355, p = 0.021; LC3B-II/PAR: r = 0.453, p = 0.02), as well as by the lymphocytic expression levels of FKBP51 (r = 0.631, p<0.0001), pAkt (r =  -0.515, p = 0.003), and Beclin1 (r = 0.521, p = 0.002) at admission. Limitations of the study include the use of male mice only and the relatively low number of patients for protein analyses. CONCLUSIONS: To our knowledge, these findings provide the first evidence for the molecular mechanism of FKBP51 in priming autophagic pathways; this process is linked to the potency of at least some antidepressants. These newly discovered functions of FKBP51 also provide novel predictive markers for treatment outcome, consistent with physiological and potential clinical relevance. Please see later in the article for the Editors' Summary.


Asunto(s)
Antidepresivos/farmacología , Autofagia/efectos de los fármacos , Autofagia/genética , Depresión/genética , Trastorno Depresivo/genética , Estrés Psicológico/genética , Proteínas de Unión a Tacrolimus/genética , Adulto , Amitriptilina/farmacología , Amitriptilina/uso terapéutico , Animales , Antidepresivos/uso terapéutico , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Células Sanguíneas/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Paroxetina/farmacología , Paroxetina/uso terapéutico , Ratas Sprague-Dawley , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Adulto Joven
2.
Sci Signal ; 17(834): eadj6603, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687825

RESUMEN

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Asunto(s)
Hipocampo , Péptidos y Proteínas de Señalización Intracelular , Plasticidad Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Receptores AMPA , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Masculino , Humanos , Receptores AMPA/metabolismo , Receptores AMPA/genética , Ratones , Plasticidad Neuronal/fisiología , Hipocampo/metabolismo , Vía de Señalización Hippo , Serina-Treonina Quinasa 3 , Transducción de Señal , Memoria/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Factor de Crecimiento de Hepatocito/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/metabolismo , Fosforilación , Neuronas/metabolismo
3.
Mamm Genome ; 24(9-10): 333-48, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24096375

RESUMEN

ßB2-crystallin (gene symbol: Crybb2/CRYBB2) was first described as a structural protein of the ocular lens. This gene, however, is also expressed in several regions of the mammalian brain, although its function in this organ remains entirely unknown. To unravel some aspects of its function in the brain, we combined behavioral, neuroanatomical, and physiological analyses in a novel Crybb2 mouse mutant, O377. Behavioral tests with male O377 mutants revealed altered sensorimotor gating, suggesting modified neuronal functions. Since these mouse mutants also displayed reduced hippocampal size, we concentrated further investigations on the hippocampus. Free intracellular Ca(2+) levels were increased and apoptosis was enhanced in the hippocampus of O377 mutants. Moreover, the expression of the gene encoding calpain 3 (gene symbol Capn3) was elevated and the expression of genes coding for the NMDA receptor subunits was downregulated. Additionally, the number of parvalbumin-positive interneurons was decreased in the hippocampus but not in the cortex of the mutants. High-speed voltage-sensitive dye imaging demonstrated an increased translation of input-to-output neuronal activity in the dentate gyrus of this Crybb2 mutant. These results point to an important function of ßB2-crystallin in the hippocampal network. They indicate pleiotropic effects of mutations in the Crybb2 gene, which previously had been considered to be specific to the ocular lens. Moreover, our results are the first to demonstrate that ßB2-crystallin has a role in hippocampal function and behavioral phenotypes. This model can now be further explored by future experiments.


Asunto(s)
Giro Dentado/metabolismo , Filtrado Sensorial , Cadena B de beta-Cristalina/metabolismo , Animales , Apoptosis , Calcio/metabolismo , Giro Dentado/patología , Giro Dentado/fisiopatología , Conducta Exploratoria , Homeostasis , Homocigoto , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Tamaño de los Órganos , Fenotipo , Cadena B de beta-Cristalina/genética
4.
PLoS One ; 18(3): e0282391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928839

RESUMEN

In cycling, propulsion is generated by the muscles of the lower limbs and hips. After the first reports of pedal/crank force measurements in the late 1960s, it has been assumed that highly trained athletes have better power transfer to the pedals than recreational cyclists. However, motor patterns indicating higher levels of performance are unknown. To compare leg muscle activation between trained (3.5-4.2 W/kgbw) and highly trained (4.3-5.1 W/kgbw) athletes we applied electromyography, lactate, and bi-pedal/crank force measurements during a maximal power test, an individual lactate threshold test and a constant power test. We show that specific activation patterns of the rectus femoris (RF) and vastus lateralis (VL) impact on individual performance during high-intensity cycling. In highly trained cyclists, we found a strong activation of the RF during hip flexion. This results in reduced negative force in the fourth quadrant of the pedal cycle. Furthermore, we discovered that pre-activation of the RF during hip flexion reduces force loss at the top dead center (TDC) and can improve force development during subsequent leg extension. Finally, we found that a higher performance level is associated with earlier and more intense coactivation of the RF and VL. This quadriceps femoris recruitment pattern improves force transmission and maintains propulsion at the TDC of the pedal cycle. Our results demonstrate neuromuscular adaptations in cycling that can be utilized to optimize training interventions in sports and rehabilitation.


Asunto(s)
Músculo Esquelético , Músculo Cuádriceps , Humanos , Músculo Cuádriceps/fisiología , Músculo Esquelético/fisiología , Extremidad Inferior/fisiología , Electromiografía , Pierna/fisiología , Ciclismo/fisiología
5.
Cell Rep ; 41(10): 111766, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476872

RESUMEN

Learning and memory rely on changes in postsynaptic glutamergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor (AMPAR) number, spatial organization, and function. The Hippo pathway component WW and C2 domain-containing protein 1 (WWC1) regulates AMPAR surface expression and impacts on memory performance. However, synaptic binding partners of WWC1 and its hierarchical position in AMPAR complexes are largely unclear. Using cell-surface proteomics in hippocampal tissue of Wwc1-deficient mice and by generating a hippocampus-specific interactome, we show that WWC1 is a major regulatory platform in AMPAR signaling networks. Under basal conditions, the Hippo pathway members WWC1 and large tumor-suppressor kinase (LATS) are associated, which might prevent WWC1 effects on synaptic proteins. Reduction of WWC1/LATS binding through a point mutation at WWC1 elevates the abundance of WWC1 in AMPAR complexes and improves hippocampal-dependent learning and memory. Thus, uncoupling of WWC1 from the Hippo pathway to AMPAR-regulatory complexes provides an innovative strategy to enhance synaptic transmission.


Asunto(s)
Proteómica , Receptores AMPA , Animales , Ratones
6.
Front Physiol ; 12: 668123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981254

RESUMEN

The lactate threshold (LT) and the strongly related maximal lactate steady state workload (MLSSW) are critical for physical endurance capacity and therefore of major interest in numerous sports. However, their relevance to individual swimming performance is not well understood. We used a custom-made visual light pacer for real-time speed modulation during front crawl to determine the LT and MLSSW in a single-exercise test. When approaching the LT, we found that minute variations in swimming speed had considerable effects on blood lactate concentration ([La-]). The LT was characterized by a sudden increase in [La-], while the MLSSW occurred after a subsequent workload reduction, as indicated by a rapid cessation of blood lactate accumulation. Determination of the MLSSW by this so-called "individual lactate threshold" (ILT)-test was highly reproducible and valid in a constant speed test. Mean swimming speed in 800 and 1,500 m competition (S-Comp) was 3.4% above MLSSW level and S-Comp, and the difference between S-Comp and the MLSSW (Δ S-Comp/MLSSW) were higher for long-distance swimmers (800-1,500 m) than for short- and middle-distance swimmers (50-400 m). Moreover, Δ S-Comp/MLSSW varied significantly between subjects and had a strong influence on overall swimming performance. Our results demonstrate that the MLSSW determines individual swimming performance, reflects endurance capacity in the sub- to supra-threshold range, and is therefore appropriate to adjust training intensity in moderate to severe domains of exercise.

7.
Front Psychiatry ; 9: 715, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627107

RESUMEN

Discovery of the Hippo pathway and its core components has made a significant impact on our progress in the understanding of organ development, tissue homeostasis, and regeneration. Upon diverse extracellular and intracellular stimuli, Hippo signaling regulates stemness, cell proliferation and apoptosis by a well-conserved signaling cascade, and disruption of these systems has been implicated in cancer as well as metabolic and neurodegenerative diseases. The central role of Hippo signaling in cell biology also results in prominent links to stress-regulated pathways. Genetic variations, epigenetically provoked upregulation of Hippo pathway members and dysregulation of cellular processes implicated in learning and memory, are linked to an increased risk of stress-related psychiatric disorders (SRPDs). In this review, we summarize recent findings, supporting the role of Hippo signaling in SRPDs by canonical and non-canonical Hippo pathway interactions.

8.
Front Physiol ; 9: 310, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651253

RESUMEN

During a continuously increasing exercise workload (WL) a point will be reached at which arterial lactate accumulates rapidly. This so-called lactate threshold (LT) is associated with the maximal lactate steady state workload (MLSSW), the highest WL, at which arterial lactate concentration [LA] does not change. However, the physiological range in which the LT and the MLSSW occur has not been demonstrated directly. We used minor WL variations in the MLSSW range to assess arterial lactate kinetics in 278 treadmill and 148 bicycle ergometer exercise tests. At a certain workload, minimal further increment of running speed (0.1-0.15 m/s) or cycling power (7-10 W) caused a steep elevation of [LA] (0.9 ± 0.43 mM, maximum increase 2.4 mM), indicating LT achievement. This sharp [LA] increase was more pronounced when higher WL increments were used (0.1 vs. 0.30 m/s, P = 0.02; 0.15 vs. 0.30 m/s, P < 0.001; 7 vs. 15 W, P = 0.002; 10 vs. 15 W, P = 0.001). A subsequent workload reduction (0.1 m/s/7 W) stopped the [LA] increase indicating MLSSW realization. LT based determination of running speed (MLSSW) was highly reproducible on a day-to-day basis (r = 0.996, P < 0.001), valid in a 10 km constant velocity setting (r = 0.981, P < 0.001) and a half marathon race (r = 0.969, P < 0.001). These results demonstrate a fine-tuned regulation of exercise-related lactate metabolism, which can be reliably captured by assessing lactate kinetics at the MLSSW.

9.
J Psychiatr Res ; 90: 46-59, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28222356

RESUMEN

The development of exaggerated avoidance behavior is largely responsible for the decreased quality of life in patients suffering from anxiety disorders. Studies using animal models have contributed to the understanding of the neural mechanisms underlying the acquisition of avoidance responses. However, much less is known about its extinction. Here we provide evidence in mice that learning about the safety of an environment (i.e., safety learning) rather than repeated execution of the avoided response in absence of negative consequences (i.e., response extinction) allowed the animals to overcome their avoidance behavior in a step-down avoidance task. This process was context-dependent and could be blocked by pharmacological (3 mg/kg, s.c.; SR141716) or genetic (lack of cannabinoid CB1 receptors in neurons expressing dopamine D1 receptors) inactivation of CB1 receptors. In turn, the endocannabinoid reuptake inhibitor AM404 (3 mg/kg, i.p.) facilitated safety learning in a CB1-dependent manner and attenuated the relapse of avoidance behavior 28 days after conditioning. Safety learning crucially depended on endocannabinoid signaling at level of the hippocampus, since intrahippocampal SR141716 treatment impaired, whereas AM404 facilitated safety learning. Other than AM404, treatment with diazepam (1 mg/kg, i.p.) impaired safety learning. Drug effects on behavior were directly mirrored by drug effects on evoked activity propagation through the hippocampal trisynaptic circuit in brain slices: As revealed by voltage-sensitive dye imaging, diazepam impaired whereas AM404 facilitated activity propagation to CA1 in a CB1-dependent manner. In line with this, systemic AM404 enhanced safety learning-induced expression of Egr1 at level of CA1. Together, our data render it likely that AM404 promotes safety learning by enhancing information flow through the trisynaptic circuit to CA1.


Asunto(s)
Reacción de Prevención/fisiología , Extinción Psicológica/fisiología , Hipocampo/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Reacción de Prevención/efectos de los fármacos , Antagonistas de Receptores de Cannabinoides/farmacología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Extinción Psicológica/efectos de los fármacos , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Inhibición Psicológica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Rimonabant , Imagen de Colorante Sensible al Voltaje
10.
Front Neurosci ; 9: 160, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25999809

RESUMEN

Decades of brain research have identified various parallel loops linking the hippocampus with neocortical areas, enabling the acquisition of spatial and episodic memories. Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate gyrus (DG) → cornu ammonis (CA)-3 → CA1] was studied in great detail because of its seemingly simple connectivity and characteristic structures that are experimentally well accessible. While numerous researchers focused on functional aspects, obtained from a limited number of cells in distinct hippocampal subregions, little is known about the neuronal network dynamics which drive information across multiple synapses for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows real-time recording of activity patterns in large/meso-scale neuronal networks with high spatial resolution. In this way, we recently found that entorhinal theta-frequency input to the DG most effectively passes filter mechanisms of the trisynaptic circuit network, generating activity waves which propagate across the entire DG-CA axis. These "trisynaptic circuit waves" involve high-frequency firing of CA3 pyramidal neurons, leading to a rapid induction of classical NMDA receptor-dependent long-term potentiation (LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced to be essential for some forms of explicit learning in mammals. Here, we review data with particular reference to whole network-level approaches, illustrating how activity propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.

11.
Artículo en Inglés | MEDLINE | ID: mdl-26594153

RESUMEN

Antidepressants (ADs) are used as first-line treatment for most stress-related psychiatric disorders. The alterations in brain circuit dynamics that can arise from stress exposure and underlie therapeutic actions of ADs remain, however, poorly understood. Here, enabled by a recently developed voltage-sensitive dye imaging (VSDI) assay in mouse brain slices, we examined the impact of chronic stress and concentration-dependent effects of eight clinically used ADs (belonging to different chemical/functional classes) on evoked neuronal activity propagations through the hippocampal trisynaptic circuitry (HTC: perforant path → dentate gyrus (DG) → area CA3 → area CA1). Exposure of mice to chronic social defeat stress led to markedly weakened activity propagations ("HTC-Waves"). In contrast, at concentrations in the low micromolar range, all ADs, which were bath applied to slices, caused an amplification of HTC-Waves in CA regions (invariably in area CA1). The fast-acting "antidepressant" ketamine, the mood stabilizer lithium, and brain-derived neurotrophic factor (BDNF) exerted comparable enhancing effects, whereas the antipsychotic haloperidol and the anxiolytic diazepam attenuated HTC-Waves. Collectively, we provide direct experimental evidence that chronic stress can depress neuronal signal flow through the HTC and demonstrate shared opposing effects of ADs. Thus, our study points to a circuit-level mechanism of ADs to counteract stress-induced impairment of hippocampal network function. However, the observed effects of ADs are impossible to depend on enhanced neurogenesis.


Asunto(s)
Antidepresivos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/fisiopatología , Animales , Azepinas/farmacología , Benzamidas/farmacología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Fármacos del Sistema Nervioso Central/farmacología , Enfermedad Crónica , Diazepam/farmacología , Modelos Animales de Enfermedad , Dominación-Subordinación , Fluoxetina/farmacología , Haloperidol/farmacología , Ketamina/farmacología , Compuestos de Litio/farmacología , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiopatología , Técnicas de Cultivo de Tejidos , Imagen de Colorante Sensible al Voltaje
12.
PLoS One ; 8(3): e60219, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555930

RESUMEN

Neuropeptide S (NPS) increasingly emerges as a potential novel treatment option for anxiety diseases like panic and posttraumatic stress disorder. However, the neural underpinnings of its anxiolytic action are still not clearly understood. Recently, we reported that neurons of the ventral hippocampus (VH) take up intranasally administered fluorophore-conjugated NPS and, moreover, that application of NPS to mouse brain slices affects neurotransmission and plasticity at hippocampal CA3-CA1 synapses. Although these previous findings define the VH as a novel NPS target structure, they leave open whether this brain region is directly involved in NPS-mediated anxiolysis and how NPS impacts on neuronal activity propagation in the VH. Here, we fill this knowledge gap by demonstrating, first, that microinjections of NPS into the ventral CA1 region are sufficient to reduce anxiety-like behavior of C57BL/6N mice and, second, that NPS, via the NPS receptor, rapidly weakens evoked neuronal activity flow from the dentate gyrus to area CA1 in vitro. Additionally, we show that intranasally applied NPS alters neurotransmission and plasticity at CA3-CA1 synapses in the same way as NPS administered to hippocampal slices. Thus, our study provides, for the first time, strong experimental evidence for a direct involvement of the VH in NPS-induced anxiolysis and furthermore presents a novel mechanism of NPS action.


Asunto(s)
Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Neuropéptidos/uso terapéutico , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Transmisión Sináptica/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-22988432

RESUMEN

There exists substantial evidence that some forms of explicit learning in mammals require long-term potentiation (LTP) at hippocampal CA3-CA1 synapses. While CA1 LTP has been well characterized at the monosynaptic level, it still remains unclear how the afferent systems to the hippocampus can initiate formation of this neuroplastic phenomenon. Using voltage-sensitive dye imaging (VSDI) in a mouse brain slice preparation, we show that evoked entorhinal cortical (EC) theta-frequency input to the dentate gyrus highly effectively generates waves of neuronal activity which propagate through the entire trisynaptic circuit of the hippocampus ("HTC-Waves"). This flow of activity, which we also demonstrate in vivo, critically depends on frequency facilitation of mossy fiber to CA3 synaptic transmission. The HTC-Waves are rapidly boosted by the cognitive enhancer caffeine (5 µM) and the stress hormone corticosterone (100 nM). They precisely follow the rhythm of the EC input, involve high-frequency firing (>100 Hz) of CA3 pyramidal neurons, and induce NMDA receptor-dependent CA1 LTP within a few seconds. Our study provides the first experimental evidence that synchronous theta-rhythmical spiking of EC stellate cells, as occurring during EC theta oscillations, has the capacity to drive induction of CA1 LTP via the hippocampal trisynaptic pathway. Moreover, we present data pointing to a basic filter mechanism of the hippocampus regarding EC inputs and describe a methodology to reveal alterations in the "input-output relationship" of the hippocampal trisynaptic circuit.

14.
J Psychiatr Res ; 45(2): 256-61, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20619419

RESUMEN

Corticotropin-releasing hormone (CRH) is thought to play an important role in the pathophysiology of stress-related psychiatric disorders, such as major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). However, knowledge about the actions of CRH at the neuronal network level is only scarce. Here, we examined whether CRH affects neuronal activity propagation through the hippocampal formation (HF), a brain region which is likely to be involved in MDD and PTSD. For this purpose, we applied voltage-sensitive dye imaging (VSDI) to specifically cut hippocampal brain slices obtained from adult mice. This approach allowed us to investigate evoked neuronal activity propagation through the HF with micrometer spatial and millisecond temporal resolution. Application of CRH (50 nM) to slices increased neuronal activity propagation from the dentate gyrus (DG) to the CA1 subfield. This effect of CRH was caused by amplification of neuronal excitation on its passage through the HF and absent in mice lacking the CRH receptor type 1 (CRHR1). In conclusion, our study presents a VSDI assay for the investigation of neuronal activity propagation through the HF and demonstrates that CRH, via CRHR1, enhances this activity propagation. This effect of CRH might contribute to alterations of memory formation seen in MDD and PTSD. Moreover, it could influence hippocampal regulation of hypothalamic-pituitary-adrenal axis (HPA-axis) activity.


Asunto(s)
Hormona Liberadora de Corticotropina/farmacología , Hipocampo/citología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Imagen de Colorante Sensible al Voltaje , Animales , Técnicas In Vitro , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Hormona Liberadora de Corticotropina/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA