Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-13, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37318006

RESUMEN

SARS-CoV-2 evolution has continued to generate variants, responsible for new pandemic waves locally and globally. Varying disease presentation and severity has been ascribed to inherent variant characteristics and vaccine immunity. This study analyzed genomic data from 305 whole genome sequences from SARS-CoV-2 patients before and through the third wave in India. Delta variant was reported in patients without comorbidity (97%), while Omicron BA.2 was reported in patients with comorbidity (77%). Tissue adaptation studies brought forth higher propensity of Omicron variants to bronchial tissue than lung, contrary to observation in Delta variants from Delhi. Study of codon usage pattern distinguished the prevalent variants, clustering them separately, Omicron BA.2 isolated in February grouped away from December strains, and all BA.2 after December acquired a new mutation S959P in ORF1b (44.3% of BA.2 in the study) indicating ongoing evolution. Loss of critical spike mutations in Omicron BA.2 and gain of immune evasion mutations including G142D, reported in Delta but absent in BA.1, and S371F instead of S371L in BA.1 could explain very brief period of BA.1 in December 2021, followed by complete replacement by BA.2. Higher propensity of Omicron variants to bronchial tissue, probably ensured increased transmission while Omicron BA.2 became the prevalent variant possibly due to evolutionary trade-off. Virus evolution continues to shape the epidemic and its culmination.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA