Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38865563

RESUMEN

RATIONALE: The influence of the lung bacterial microbiome, including potential pathogens, in patients with influenza- or COVID-19-associated pulmonary aspergillosis (IAPA or CAPA) is yet to be explored. OBJECTIVES: To explore the composition of the lung bacterial microbiome and its association with viral and fungal infection, immunity and outcome in severe influenza versus COVID-19 with or without aspergillosis. METHODS: We performed a retrospective study in mechanically ventilated influenza and COVID-19 patients with or without invasive aspergillosis in whom bronchoalveolar lavage (BAL) for bacterial culture (with or without PCR) was obtained within two weeks after ICU admission. Additionally, 16S rRNA gene sequencing data and viral and bacterial load of BAL samples from a subset of these patients, and of patients requiring non-invasive ventilation, were analyzed. We integrated 16S rRNA gene sequencing data with existing immune parameter datasets. MEASUREMENTS AND MAIN RESULTS: Potential bacterial pathogens were detected in 20% (28/142) of influenza and 37% (104/281) of COVID-19 patients, while aspergillosis was detected in 38% (54/142) of influenza and 31% (86/281) of COVID-19 patients. A significant association between bacterial pathogens in BAL and 90-day mortality was found only in influenza patients, particularly IAPA patients. COVID-19 but not influenza patients showed increased pro-inflammatory pulmonary cytokine responses to bacterial pathogens. CONCLUSIONS: Aspergillosis is more frequently detected in lungs of severe influenza patients than bacterial pathogens. Detection of bacterial pathogens associates with worse outcome in influenza patients, particularly in those with IAPA, but not in COVID-19 patients. The immunological dynamics of tripartite viral-fungal-bacterial interactions deserve further investigation. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
Arch Pharm (Weinheim) ; 357(1): e2300442, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37840345

RESUMEN

The coronavirus disease-19 (COVID-19) pandemic has raised major interest in innovative drug concepts to suppress human coronavirus (HCoV) infections. We previously reported on a class of 1,2,3-triazolo fused betulonic acid derivatives causing strong inhibition of HCoV-229E replication via the viral nsp15 protein, which is proposedly related to compound binding at an intermonomer interface in hexameric nsp15. In the present study, we further explored the structure-activity relationship (SAR), by varying the substituent at the 1,2,3-triazolo ring as well as the triterpenoid skeleton. The 1,2,3-triazolo fused triterpenoids were synthesized by a multicomponent triazolization reaction, which has been developed in-house. Several analogs possessing a betulin, oleanolic acid, or ursolic acid core displayed favorable activity and selectivity (EC50 values for HCoV-229E: 1.6-3.5 µM), but neither of them proved as effective as the lead compound containing betulonic acid. The 18ß-glycyrrhetinic acid-containing analogs had low selectivity. The antiviral findings were rationalized by in silico docking in the available structure of the HCoV-229E nsp15 protein. The new SAR insights will aid the further development of these 1,2,3-triazolo fused triterpenoid compounds as a unique type of coronavirus inhibitors.


Asunto(s)
Coronavirus Humano 229E , Triterpenos , Humanos , Coronavirus Humano 229E/metabolismo , Proteínas Virales , Triterpenos/farmacología , Relación Estructura-Actividad
3.
PLoS Pathog ; 17(4): e1009500, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886690

RESUMEN

The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology.


Asunto(s)
COVID-19/metabolismo , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/transmisión , Coronavirus Humano 229E/metabolismo , Furina/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Péptido Hidrolasas/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Temperatura , Internalización del Virus , Replicación Viral/fisiología
4.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240111

RESUMEN

Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 µM to 2.78 µM for dimers and 8.56 µM to 10.12 µM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.


Asunto(s)
COVID-19 , Peptidomiméticos , Humanos , SARS-CoV-2 , Peptidomiméticos/farmacología , Sitios de Unión , Enzima Convertidora de Angiotensina 2/química , Polimixinas , Pandemias , Unión Proteica
5.
Bioorg Chem ; 116: 105388, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34670331

RESUMEN

Seasonal influenza A and B viruses represent a global concern. Antiviral drugs are crucial to treat severe influenza in high-risk patients and prevent virus spread in case of a pandemic. The emergence of viruses showing drug resistance, in particular for the recently licensed polymerase inhibitor baloxavir marboxil, drives the need for developing alternative antivirals. The endonuclease activity residing in the N-terminal domain of the polymerase acidic protein (PAN) is crucial for viral RNA synthesis and a validated target for drug design. Its function can be impaired by molecules bearing a metal-binding pharmacophore (MBP) able to coordinate the two divalent metal ions in the active site. In the present work, the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold is explored for the inhibition of influenza virus PA endonuclease. The structure-activity relationship was analysed by modifying the substituents on the lipophilic moiety linked to the MBP. The new compounds exhibited nanomolar inhibitory activity in a FRET-based enzymatic assay, and a few compounds (15-17, 21) offered inhibition in the micromolar range, in a cell-based influenza virus polymerase assay. When investigated against a panel of PA-mutant forms, compound 17 was shown to retain full activity against the baloxavir-resistant I38T mutant. This was corroborated by docking studies providing insight into the binding mode of this novel class of PA inhibitors.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Isoindoles/farmacología , Orthomyxoviridae/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células HEK293 , Humanos , Isoindoles/síntesis química , Isoindoles/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Orthomyxoviridae/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Relación Estructura-Actividad , Proteínas Virales/metabolismo
6.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597759

RESUMEN

Influenza A virus (IAV) and influenza B virus (IBV) cause yearly epidemics with significant morbidity and mortality. When zoonotic IAVs enter the human population, the viral hemagglutinin (HA) requires adaptation to achieve sustained virus transmission. In contrast, IBV has been circulating in humans, its only host, for a long period of time. Whether this entailed adaptation of IBV HA to the human airways is unknown. To address this question, we compared two seasonal IAVs (A/H1N1 and A/H3N2) and two IBVs (B/Victoria and B/Yamagata lineages) with regard to host-dependent activity of HA as the mediator of membrane fusion during viral entry. We first investigated proteolytic activation of HA by covering all type II transmembrane serine protease (TTSP) and kallikrein enzymes, many of which proved to be present in human respiratory epithelium. The IBV HA0 precursor is cleaved by a broader panel of TTSPs and activated with much higher efficiency than IAV HA0. Accordingly, knockdown of a single protease, TMPRSS2, abrogated spread of IAV but not IBV in human respiratory epithelial cells. Second, the HA fusion pH values proved similar for IBV and human-adapted IAVs (with one exception being the HA of 1918 IAV). Third, IBV HA exhibited higher expression at 33°C, a temperature required for membrane fusion by B/Victoria HA. This indicates pronounced adaptation of IBV HA to the mildly acidic pH and cooler temperature of human upper airways. These distinct and intrinsic features of IBV HA are compatible with extensive host adaptation during prolonged circulation of this respiratory virus in the human population.IMPORTANCE Influenza epidemics are caused by influenza A and influenza B viruses (IAV and IBV, respectively). IBV causes substantial disease; however, it is far less studied than IAV. While IAV originates from animal reservoirs, IBV circulates in humans only. Virus spread requires that the viral hemagglutinin (HA) is active and sufficiently stable in human airways. We resolve here how these mechanisms differ between IBV and IAV. Whereas human IAVs rely on one particular protease for HA activation, this is not the case for IBV. Superior activation of IBV by several proteases should enhance shedding of infectious particles. IBV HA exhibits acid stability and a preference for 33°C, indicating pronounced adaptation to the human upper airways, where the pH is mildly acidic and a cooler temperature exists. These adaptive features are rationalized by the long existence of IBV in humans and may have broader relevance for understanding the biology and evolution of respiratory viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Gripe Humana/virología , Pulmón/virología , Replicación Viral/genética , Línea Celular , Células Epiteliales/patología , Células Epiteliales/virología , Regulación de la Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Concentración de Iones de Hidrógeno , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza B/metabolismo , Virus de la Influenza B/patogenicidad , Gripe Humana/patología , Calicreínas/clasificación , Calicreínas/genética , Calicreínas/metabolismo , Pulmón/patología , Fusión de Membrana , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteolisis , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Serina Proteasas/clasificación , Serina Proteasas/genética , Serina Proteasas/metabolismo , Especificidad de la Especie , Temperatura , Internalización del Virus
7.
J Gen Virol ; 100(4): 583-601, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30762518

RESUMEN

The possible resistance of influenza virus against existing antiviral drugs calls for new therapeutic concepts. One appealing strategy is to inhibit virus entry, in particular at the stage of internalization. This requires a better understanding of virus-host interactions during the entry process, including the role of receptor tyrosine kinases (RTKs). To search for cellular targets, we evaluated a panel of 276 protein kinase inhibitors in a multicycle antiviral assay in Madin-Darby canine kidney cells. The RTK inhibitor Ki8751 displayed robust anti-influenza A and B virus activity and was selected for mechanistic investigations. Ki8751 efficiently disrupted the endocytic process of influenza virus in different cell lines carrying platelet-derived growth factor receptor ß (PDGFRß), an RTK that is known to act at GM3 ganglioside-positive lipid rafts. The more efficient virus entry in CHO-K1 cells compared to the wild-type ancestor (CHO-wt) cells indicated a positive effect of GM3, which is abundant in CHO-K1 but not in CHO-wt cells. Entering virus localized to GM3-positive lipid rafts and the PDGFRß-containing endosomal compartment. PDGFRß/GM3-dependent virus internalization involved PDGFRß phosphorylation, which was potently inhibited by Ki8751, and desialylation of activated PDGFRß by the viral neuraminidase. Virus uptake coincided with strong activation of the Raf/MEK/Erk cascade, but not of PI3K/Akt or phospholipase C-γ. We conclude that influenza virus efficiently hijacks the GM3-enhanced PDGFRß signalling pathway for cell penetration, providing an opportunity for host cell-targeting antiviral intervention.


Asunto(s)
Gangliósido G(M3)/metabolismo , Gripe Humana/metabolismo , Gripe Humana/virología , Infecciones por Orthomyxoviridae/metabolismo , Orthomyxoviridae/patogenicidad , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/fisiología , Animales , Células CHO , Línea Celular , Cricetulus , Perros , Células HEK293 , Humanos , Gripe Humana/tratamiento farmacológico , Células de Riñón Canino Madin Darby , Orthomyxoviridae/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
8.
Arch Pharm (Weinheim) ; 352(6): e1800330, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31073993

RESUMEN

A series of 1-thia-4-azaspiro[4.5]decan-3-ones bearing an amide group at C-4 and various substitutions at C-2 and C-8 were synthesized and evaluated against human coronavirus and influenza virus. Compounds 7m, 7n, 8k, 8l, 8m, 8n, and 8p were found to inhibit human coronavirus 229E replication. The most active compound was N-(2-methyl-8-tert-butyl-3-oxo-1-thia-4-azaspiro[4.5]decan-4-yl)-3-phenylpropanamide (8n), with an EC50 value of 5.5 µM, comparable to the known coronavirus inhibitor, (Z)-N-[3-[4-(4-bromophenyl)-4-hydroxypiperidin-1-yl]-3-oxo-1-phenylprop-1-en-2-yl]benzamide (K22). Compound 8n and structural analogs were devoid of anti-influenza virus activity, although their scaffold is shared with a previously discovered class of H3 hemagglutinin-specific influenza virus fusion inhibitors. These findings point to the 1-thia-4-azaspiro[4.5]decan-3-one scaffold as a versatile chemical structure with high relevance for antiviral drug development.


Asunto(s)
Antivirales/síntesis química , Compuestos Aza/síntesis química , Coronavirus/efectos de los fármacos , Diseño de Fármacos , Compuestos de Espiro/síntesis química , Animales , Antivirales/química , Antivirales/farmacología , Compuestos Aza/química , Compuestos Aza/farmacología , Efecto Citopatogénico Viral/efectos de los fármacos , Perros , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Humanos , Células de Riñón Canino Madin Darby , Estructura Molecular , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
9.
Bioorg Med Chem ; 26(15): 4544-4550, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30082105

RESUMEN

Searching for new antiviral agents, we focused our interest on the influenza PA-Nter endonuclease. Therefore, we developed a three-dimensional pharmacophore model which contains the binding features addressed to the metal-chelating active site. The obtained hypothesis has been fruitfully employed to select three "hit compounds" through an in silico screening campaign on our in-house database of small molecules. We studied the binding poses of these hit compounds using molecular docking, and subjected them to an enzymatic assay with recombinant PA-Nter endonuclease. Compound 20 proved the most active inhibitor of the endonucleolytic cleavage reaction, with an IC50 value of 12 µM.


Asunto(s)
Orthomyxoviridae/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Planta Med ; 83(7): 615-623, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27806409

RESUMEN

Chlorogenic acids are secondary metabolites in diverse plants. Some chlorogenic acids extracted from traditional medicinal plants are known for their healing properties, e.g., against viral infections. Also, green coffee beans are a rich source of chlorogenic acids, with 5-O-caffeoylquinic acid being the most abundant chlorogenic acid in coffee. We previously reported the synthesis of the regioisomers of lactones, bearing different substituents on the quinidic core. Here, 3,4-O-dicaffeoyl-1,5-γ-quinide and three dimethoxycinnamoyl-γ-quinides were investigated for in vitro antiviral activities against a panel of 14 human viruses. Whereas the dimethoxycinnamoyl-γ-quinides did not show any antiviral potency in cytopathogenic effect reduction assays, 3,4-O-dicaffeoyl-1,5-γ-quinide exerted mild antiviral activity against herpes simplex viruses, adenovirus, and influenza virus. Interestingly, when the compounds were evaluated against respiratory syncytial virus, a potent antiviral effect of 3,4-O-dicaffeoyl-1,5-γ-quinide was observed against both subtypes of respiratory syncytial virus, with EC50 values in the submicromolar range. Time-of-addition experiments revealed that this compound acts on an intracellular post-entry replication step. Our data show that 3,4-O-dicaffeoyl-1,5-γ-quinide is a relevant candidate for lead optimization and further mechanistic studies, and warrants clinical development as a potential anti-respiratory syncytial virus drug.


Asunto(s)
Antivirales/farmacología , Ácido Clorogénico/uso terapéutico , Café/química , Extractos Vegetales/uso terapéutico , Ácido Quínico/análogos & derivados , Virus/efectos de los fármacos , Animales , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Orthomyxoviridae/efectos de los fármacos , Ácido Quínico/uso terapéutico , Virus Sincitiales Respiratorios/efectos de los fármacos , Sistema Respiratorio/virología , Células Vero
11.
Med Res Rev ; 36(6): 1127-1173, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27569399

RESUMEN

Influenza viruses cause seasonal epidemics and pandemic outbreaks associated with significant morbidity and mortality, and a huge cost. Since resistance to the existing anti-influenza drugs is rising, innovative inhibitors with a different mode of action are urgently needed. The influenza polymerase complex is widely recognized as a key drug target, given its critical role in virus replication and high degree of conservation among influenza A (of human or zoonotic origin) and B viruses. We here review the major progress that has been made in recent years in unravelling the structure and functions of this protein complex, enabling structure-aided drug design toward the core regions of the PA endonuclease, PB1 polymerase, or cap-binding PB2 subunit. Alternatively, inhibitors may target a protein-protein interaction site, a cellular factor involved in viral RNA synthesis, the viral RNA itself, or the nucleoprotein component of the viral ribonucleoprotein. The latest advances made for these diverse pharmacological targets have yielded agents in advanced (i.e., favipiravir and VX-787) or early clinical testing, besides several experimental inhibitors in various stages of development, which are all covered here.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Antivirales/química , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Modelos Moleculares , Proteínas Virales/química , Proteínas Virales/metabolismo
12.
Mol Pharmacol ; 87(2): 323-37, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25477342

RESUMEN

The influenza virus PA endonuclease, which cleaves capped cellular pre-mRNAs to prime viral mRNA synthesis, is a promising target for novel anti-influenza virus therapeutics. The catalytic center of this enzyme resides in the N-terminal part of PA (PA-Nter) and contains two (or possibly one or three) Mg(2+) or Mn(2+) ions, which are critical for its catalytic function. There is great interest in PA inhibitors that are optimally designed to occupy the active site and chelate the metal ions. We focused here on a series of ß-diketo acid (DKA) and DKA-bioisosteric compounds containing different scaffolds, and determined their structure-activity relationship in an enzymatic assay with PA-Nter, in order to build a three-dimensional pharmacophore model. In addition, we developed a molecular beacon (MB)-based PA-Nter assay that enabled us to compare the inhibition of Mn(2+) versus Mg(2+), the latter probably being the biologically relevant cofactor. This real-time MB assay allowed us to measure the enzyme kinetics of PA-Nter or perform high-throughput screening. Several DKA derivatives were found to cause strong inhibition of PA-Nter, with IC50 values comparable to that of the prototype L-742,001 (i.e., below 2 µM). Among the different compounds tested, L-742,001 appeared unique in having equal activity against either Mg(2+) or Mn(2+). Three compounds ( 10: , with a pyrrole scaffold, and 40: and 41: , with an indole scaffold) exhibited moderate antiviral activity in cell culture (EC99 values 64-95 µM) and were proven to affect viral RNA synthesis. Our approach of integrating complementary enzymatic, cellular, and mechanistic assays should guide ongoing development of improved influenza virus PA inhibitors.


Asunto(s)
Antivirales/farmacología , Quelantes/farmacología , Descubrimiento de Drogas/métodos , Endonucleasas/antagonistas & inhibidores , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/enzimología , Animales , Antivirales/química , Quelantes/química , Perros , Endonucleasas/metabolismo , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Conformación Molecular
13.
J Biol Inorg Chem ; 20(7): 1109-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26323352

RESUMEN

The influenza virus PA endonuclease is an attractive target for the development of novel anti-influenza virus therapeutics, which are urgently needed because of the emergence of drug-resistant viral strains. Reported PA inhibitors are assumed to chelate the divalent metal ion(s) (Mg²âº or Mn²âº) in the enzyme's catalytic site, which is located in the N-terminal part of PA (PA-Nter). In the present work, a series of salicylaldehyde thiosemicarbazone derivatives have been synthesized and evaluated for their ability to inhibit the PA-Nter catalytic activity. Compounds 1-6 have been evaluated against influenza virus, both in enzymatic assays with influenza virus PA-Nter and in virus yield assays in MDCK cells. In order to establish a structure-activity relationship, the hydrazone analogue of the most active thiosemicarbazone has also been evaluated. Since chelation may represent a mode of action of such class of molecules, we studied the interaction of two of them, one with and one without biological activity versus the PA enzyme, towards Mg²âº, the ion that is probably involved in the endonuclease activity of the heterotrimeric influenza polymerase complex. The crystal structure of the magnesium complex of the o-vanillin thiosemicarbazone ligand 1 is also described. Moreover, docking studies of PA endonuclease with compounds 1 and 2 were performed, to further analyse the possible mechanism of action of this class of inhibitors.


Asunto(s)
Aldehídos/química , Aldehídos/farmacología , Antivirales/síntesis química , Endonucleasas/antagonistas & inhibidores , Orthomyxoviridae/efectos de los fármacos , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Antivirales/química , Antivirales/farmacología , Sitios de Unión , Bioensayo , Línea Celular , Simulación por Computador , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Estructura Molecular
14.
J Virol ; 87(19): 10524-38, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23824822

RESUMEN

The influenza virus PA endonuclease, which cleaves capped host pre-mRNAs to initiate synthesis of viral mRNA, is a prime target for antiviral therapy. The diketo acid compound L-742,001 was previously identified as a potent inhibitor of the influenza virus endonuclease reaction, but information on its precise binding mode to PA or potential resistance profile is limited. Computer-assisted docking of L-742,001 into the crystal structure of inhibitor-free N-terminal PA (PA-Nter) indicated a binding orientation distinct from that seen in a recent crystallographic study with L-742,001-bound PA-Nter (R. M. DuBois et al., PLoS Pathog. 8:e1002830, 2012). A comprehensive mutational analysis was performed to determine which amino acid changes within the catalytic center of PA or its surrounding hydrophobic pockets alter the antiviral sensitivity to L-742,001 in cell culture. Marked (up to 20-fold) resistance to L-742,001 was observed for the H41A, I120T, and G81F/V/T mutant forms of PA. Two- to 3-fold resistance was seen for the T20A, L42T, and V122T mutants, and the R124Q and Y130A mutants were 3-fold more sensitive to L-742,001. Several mutations situated at noncatalytic sites in PA had no or only marginal impact on the enzymatic functionality of viral ribonucleoprotein complexes reconstituted in cell culture, consistent with the less conserved nature of these PA residues. Our data provide relevant insights into the binding mode of L-742,001 in the PA endonuclease active site. In addition, we predict some potential resistance sites that should be taken into account during optimization of PA endonuclease inhibitors toward tight binding in any of the hydrophobic pockets surrounding the catalytic center of the enzyme.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Hidroxibutiratos/farmacología , Mutación/genética , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Orthomyxoviridae/efectos de los fármacos , Piperidinas/farmacología , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Animales , Dominio Catalítico , Células Cultivadas , Biología Computacional , Perros , Farmacorresistencia Viral , Humanos , Estructura Molecular , Orthomyxoviridae/enzimología , Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología , Conformación Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral
15.
Mol Pharm ; 11(1): 304-16, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24206028

RESUMEN

The influenza virus PA endonuclease is an attractive target for development of novel anti-influenza virus therapeutics. Reported PA inhibitors chelate the divalent metal ion(s) in the enzyme's catalytic site, which is located in the N-terminal part of PA (PA-Nter). In this work, a series of 2-hydroxybenzamide-based compounds have been synthesized and biologically evaluated in order to identify the essential pharmacophoric motif, which could be involved in functional sequestration of the metal ions (probably Mg(2+)) in the catalytic site of PA. By using HL(1), H2L(2), and HL(3) as model ligands with Mg(2+) ions, we isolated and fully characterized a series of complexes and tested them for inhibitory activity toward PA-Nter endonuclease. H2L(2) and the corresponding Mg(2+) complex showed an interesting inhibition of the endonuclease activity. The crystal structures of the uncomplexed HL(1) and H2L(2) and of the isolated magnesium complex [Mg(L(3))2(MeOH)2]·2MeOH were solved by X-ray diffraction analysis. Furthermore, the speciation models for HL(1), H2L(2), and HL(3) with Mg(2+) were obtained, and the formation constants of the complexes were measured. Preliminary docking calculations were conducted to investigate the interactions of the title compounds with essential amino acids in the PA-Nter active site. These findings supported the "two-metal" coordination of divalent ions by a donor triad atoms chemotype as a powerful strategy to develop more potent PA endonuclease inhibitors.


Asunto(s)
Benzamidas/química , Quelantes/farmacología , Complejos de Coordinación/farmacología , Magnesio/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Virales/antagonistas & inhibidores , Dominio Catalítico , Quelantes/química , Complejos de Coordinación/química , Cristalografía por Rayos X , Magnesio/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Virales/metabolismo , Difracción de Rayos X
16.
Antiviral Res ; 228: 105921, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825019

RESUMEN

The SARS-CoV-2 pandemic has bolstered unprecedented research efforts to better understand the pathogenesis of coronavirus (CoV) infections and develop effective therapeutics. We here focus on non-structural protein nsp15, a hexameric component of the viral replication-transcription complex (RTC). Nsp15 possesses uridine-specific endoribonuclease (EndoU) activity for which some specific cleavage sites were recently identified in viral RNA. By preventing accumulation of viral dsRNA, EndoU helps the virus to evade RNA sensors of the innate immune response. The immune-evading property of nsp15 was firmly established in several CoV animal models and makes it a pertinent target for antiviral therapy. The search for nsp15 inhibitors typically proceeds via compound screenings and is aided by the rapidly evolving insight in the protein structure of nsp15. In this overview, we broadly cover this fascinating protein, starting with its structure, biochemical properties and functions in CoV immune evasion. Next, we summarize the reported studies in which compound screening or a more rational method was used to identify suitable leads for nsp15 inhibitor development. In this way, we hope to raise awareness on the relevance and druggability of this unique CoV protein.

17.
Antiviral Res ; 213: 105587, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36977434

RESUMEN

Despite the vaccination campaigns for COVID-19, we still cannot control the spread of SARS-CoV-2, as evidenced by the ongoing circulation of the Omicron variants of concern. This highlights the need for broad-spectrum antivirals to further combat COVID-19 and to be prepared for a new pandemic with a (re-)emerging coronavirus. An interesting target for antiviral drug development is the fusion of the viral envelope with host cell membranes, a crucial early step in the replication cycle of coronaviruses. In this study, we explored the use of cellular electrical impedance (CEI) to quantitatively monitor morphological changes in real time, resulting from cell-cell fusion elicited by SARS-CoV-2 spike. The impedance signal in CEI-quantified cell-cell fusion correlated with the expression level of SARS-CoV-2 spike in transfected HEK293T cells. For antiviral assessment, we validated the CEI assay with the fusion inhibitor EK1 and measured a concentration-dependent inhibition of SARS-CoV-2 spike mediated cell-cell fusion (IC50 value of 0.13 µM). In addition, CEI was used to confirm the fusion inhibitory activity of the carbohydrate-binding plant lectin UDA against SARS-CoV-2 (IC50 value of 0.55 µM), which complements prior in-house profiling activities. Finally, we explored the utility of CEI in quantifying the fusogenic potential of mutant spike proteins and in comparing the fusion efficiency of SARS-CoV-2 variants of concern. In summary, we demonstrate that CEI is a powerful and sensitive technology that can be applied to studying the fusion process of SARS-CoV-2 and to screening and characterizing fusion inhibitors in a label-free and non-invasive manner.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Impedancia Eléctrica , Células HEK293 , Glicoproteína de la Espiga del Coronavirus/química , Fusión de Membrana , Antivirales/farmacología , Antivirales/química , Antirretrovirales/farmacología
18.
Antiviral Res ; 217: 105700, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562608

RESUMEN

Here, we report on the anti-SARS-CoV-2 activity of PRO-2000, a sulfonated polyanionic compound. In Vero cells infected with the Wuhan, alpha, beta, delta or omicron variant, PRO-2000 displayed EC50 values of 1.1 µM, 2.4 µM, 1.3 µM, 2.1 µM and 0.11 µM, respectively, and an average selectivity index (i.e. ratio of cytotoxic versus antiviral concentration) of 172. Its anti-SARS-CoV-2 activity was confirmed by virus yield assays in Vero cells, Caco2 cells and A549 cells overexpressing ACE2 and TMPRSS2 (A549-AT). Using pseudoviruses bearing the SARS-CoV-2 spike (S), PRO-2000 was shown to block the S-mediated pseudovirus entry in Vero cells and A549-AT cells, with EC50 values of 0.091 µM and 1.6 µM, respectively. This entry process is initiated by interaction of the S glycoprotein with angiotensin-converting enzyme 2 (ACE2) and heparan sulfate proteoglycans. Surface Plasmon Resonance (SPR) studies showed that PRO-2000 binds to the receptor-binding domain (RBD) of S with a KD of 1.6 nM. Similar KD values (range: 1.2 nM-2.1 nM) were obtained with the RBDs of the alpha, beta, delta and omicron variants. In an SPR neutralization assay, PRO-2000 had no effect on the interaction between the RBD and ACE2. Instead, PRO-2000 was proven to inhibit binding of the RBD to a heparin-coated sensor chip, yielding an IC50 of 1.1 nM. To conclude, PRO-2000 has the potential to inhibit a broad range of SARS-CoV-2 variants by blocking the heparin-binding site on the S protein.


Asunto(s)
Antivirales , COVID-19 , Chlorocebus aethiops , Animales , Humanos , Antivirales/farmacología , Enzima Convertidora de Angiotensina 2 , Células CACO-2 , Células Vero , SARS-CoV-2 , Unión Proteica , Glicoproteína de la Espiga del Coronavirus
19.
Curr Opin Virol ; 57: 101279, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36403338

RESUMEN

The COVID-19 pandemic has accelerated the development of nucleoside analogs to treat respiratory virus infections, with remdesivir being the first compound to receive worldwide authorization and three other nucleoside analogs (i.e. favipiravir, molnupiravir, and bemnifosbuvir) in the pipeline. Here, we summarize the current knowledge concerning their clinical efficacy in suppressing the virus and reducing the need for hospitalization or respiratory support. We also mention trials of favipiravir and lumicitabine, for influenza and respiratory syncytial virus, respectively. Besides, we outline how nucleoside analogs interact with the polymerases of respiratory viruses, to cause lethal virus mutagenesis or disturbance of viral RNA synthesis. In this way, we aim to convey the key findings on this rapidly evolving class of respiratory virus medication.


Asunto(s)
COVID-19 , Virus Sincitial Respiratorio Humano , Humanos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Replicación Viral , Pandemias , Resultado del Tratamiento
20.
mBio ; 13(4): e0137622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35913162

RESUMEN

The continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urges better understanding of the functional motifs in the spike (S) protein and their tolerance to mutations. Here, we focused on the S2' motif, which, during virus entry, requires cleavage by a host cell protease to release the fusion peptide. Though belonging to an immunogenic region, the SARS-CoV-2 S2' motif (811-KPSKR-815) has shown hardly any variation, with its three basic (K/R) residues being >99.99% conserved thus far. By creating a series of mutant pseudoviruses bearing the spikes of Wuhan-Hu-1, its G614 mutant or the Delta and Omicron variants, we show that residue K814 (preceding the scissile R815) is dispensable for TMPRSS2 yet favored by the alternative TMPRSS13 protease. Activation by TMPRSS13 was drastically reduced when the SARS-CoV-2 S2' motif was swapped with that of the low pathogenic 229E coronavirus (685-RVAGR-689), and also, the reverse effect was seen. This swap had no impact on recognition by TMPRSS2. In the Middle East respiratory syndrome coronavirus (MERS-CoV) spike, introducing a dibasic scissile motif was easily accepted by TMPRSS13 but less so by TMPRSS2, confirming that TMPRSS13 favors a sequence rich in K/R residues. Pseudovirus entry experiments in Calu-3 cells confirmed that the S2' mutations have minor impact on TMPRSS2. Our findings are the first to demonstrate which S2' residues are important for SARS-CoV-2 spike activation by these two airway proteases, with TMPRSS2 being more tolerant to variation than TMPRSS13. This preemptive insight will help to estimate the impact of S2' motif changes as they appear in new SARS-CoV-2 variants. IMPORTANCE Since its introduction in humans, SARS-CoV-2 is evolving with frequent appearance of new variants. The surveillance would benefit from proactive characterization of the functional motifs in the spike (S) protein, the most variable viral factor. This is linked to immune evasion but also influences spike functioning. Remarkably, though located in a strongly immunogenic region, the S2' cleavage motif has, thus far, remained highly conserved. This suggests that its sequence is critical for spike activation by airway proteases. To investigate this, we assessed how pseudovirus entry is affected by changes in the S2' motif. We demonstrate that TMPRSS2 readily accepts variations in this motif, whereas the alternative TMPRSS13 protease is more fastidious. The Wuhan-Hu-1, G614, Delta and Omicron spikes showed no difference in this regard. Being the first in its kind, our study will help to assess the impact of S2' variations as soon as they are detected during variant surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteínas de la Membrana/genética , Mutación , Péptido Hidrolasas/genética , SARS-CoV-2/genética , Serina Endopeptidasas/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA