Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 72(6): 1968-1986, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32145091

RESUMEN

BACKGROUND AND AIMS: Vacuolar H+-ATP complex (V-ATPase) is a multisubunit protein complex required for acidification of intracellular compartments. At least five different factors are known to be essential for its assembly in the endoplasmic reticulum (ER). Genetic defects in four of these V-ATPase assembly factors show overlapping clinical features, including steatotic liver disease and mild hypercholesterolemia. An exception is the assembly factor vacuolar ATPase assembly integral membrane protein (VMA21), whose X-linked mutations lead to autophagic myopathy. APPROACH AND RESULTS: Here, we report pathogenic variants in VMA21 in male patients with abnormal protein glycosylation that result in mild cholestasis, chronic elevation of aminotransferases, elevation of (low-density lipoprotein) cholesterol and steatosis in hepatocytes. We also show that the VMA21 variants lead to V-ATPase misassembly and dysfunction. As a consequence, lysosomal acidification and degradation of phagocytosed materials are impaired, causing lipid droplet (LD) accumulation in autolysosomes. Moreover, VMA21 deficiency triggers ER stress and sequestration of unesterified cholesterol in lysosomes, thereby activating the sterol response element-binding protein-mediated cholesterol synthesis pathways. CONCLUSIONS: Together, our data suggest that impaired lipophagy, ER stress, and increased cholesterol synthesis lead to LD accumulation and hepatic steatosis. V-ATPase assembly defects are thus a form of hereditary liver disease with implications for the pathogenesis of nonalcoholic fatty liver disease.


Asunto(s)
Autofagia/genética , Trastornos Congénitos de Glicosilación/genética , Hepatopatías/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adulto , Biopsia , Células Cultivadas , Trastornos Congénitos de Glicosilación/sangre , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/patología , Análisis Mutacional de ADN , Fibroblastos , Humanos , Hígado/citología , Hígado/patología , Hepatopatías/sangre , Hepatopatías/diagnóstico , Hepatopatías/patología , Masculino , Mutación Missense , Linaje , Cultivo Primario de Células
2.
Nature ; 481(7381): 360-4, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22230956

RESUMEN

Many cellular processes are carried out by molecular 'machines'-assemblies of multiple differentiated proteins that physically interact to execute biological functions. Despite much speculation, strong evidence of the mechanisms by which these assemblies evolved is lacking. Here we use ancestral gene resurrection and manipulative genetic experiments to determine how the complexity of an essential molecular machine--the hexameric transmembrane ring of the eukaryotic V-ATPase proton pump--increased hundreds of millions of years ago. We show that the ring of Fungi, which is composed of three paralogous proteins, evolved from a more ancient two-paralogue complex because of a gene duplication that was followed by loss in each daughter copy of specific interfaces by which it interacts with other ring proteins. These losses were complementary, so both copies became obligate components with restricted spatial roles in the complex. Reintroducing a single historical mutation from each paralogue lineage into the resurrected ancestral proteins is sufficient to recapitulate their asymmetric degeneration and trigger the requirement for the more elaborate three-component ring. Our experiments show that increased complexity in an essential molecular machine evolved because of simple, high-probability evolutionary processes, without the apparent evolution of novel functions. They point to a plausible mechanism for the evolution of complexity in other multi-paralogue protein complexes.


Asunto(s)
Evolución Molecular , Hongos/enzimología , Modelos Biológicos , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Algoritmos , Biología Computacional , Extinción Biológica , Hongos/clasificación , Hongos/genética , Duplicación de Gen , Mutagénesis , Filogenia , Conformación Proteica , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/genética
5.
J Biol Chem ; 287(23): 19487-500, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22496448

RESUMEN

Subunit a of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase) is responsible for both proton translocation and subcellular localization of this highly conserved molecular machine. Inclusion of the Vph1p isoform causes the V-ATPase complex to traffic to the vacuolar membrane, whereas incorporation of Stv1p causes continued cycling between the trans-Golgi and endosome. We previously demonstrated that this targeting information is contained within the cytosolic, N-terminal portion of V-ATPase subunit a (Stv1p). To identify residues responsible for sorting of the Golgi isoform of the V-ATPase, a random mutagenesis was performed on the N terminus of Stv1p. Subsequent characterization of mutant alleles led to the identification of a short peptide sequence, W(83)KY, that is necessary for proper Stv1p localization. Based on three-dimensional homology modeling to the Meiothermus ruber subunit I, we propose a structural model of the intact Stv1p-containing V-ATPase demonstrating the accessibility of the W(83)KY sequence to retrograde sorting machinery. Finally, we characterized the sorting signal within the context of a reconstructed Stv1p ancestor (Anc.Stv1). This evolutionary intermediate includes an endogenous W(83)KY sorting motif and is sufficient to compete with sorting of the native yeast Stv1p V-ATPase isoform. These data define a novel sorting signal that is both necessary and sufficient for trafficking of the V-ATPase within the Golgi/endosomal network.


Asunto(s)
Endosomas/enzimología , Señales de Clasificación de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Red trans-Golgi/enzimología , Secuencias de Aminoácidos , Endosomas/genética , Evolución Molecular , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología Estructural de Proteína , ATPasas de Translocación de Protón Vacuolares/genética , Red trans-Golgi/genética
9.
Traffic ; 9(10): 1618-28, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18694437

RESUMEN

How individual protein subunits assemble into the higher order structure of a protein complex is not well understood. Four proteins dedicated to the assembly of the V(0) subcomplex of the V-adenosine triphosphatase (V-ATPase) in the endoplasmic reticulum (ER) have been identified in yeast, but their precise mode of molecular action remains to be identified. In contrast to the highly conserved subunits of the V-ATPase, orthologs of the yeast assembly factors are not easily identified based on sequence similarity. We show in this study that two ER-localized Arabidopsis proteins that share only 25% sequence identity with Vma21p can functionally replace this yeast assembly factor. Loss of AtVMA21a function in RNA interference seedlings caused impaired cell expansion and changes in Golgi morphology characteristic for plants with reduced V-ATPase activity, and we therefore conclude that AtVMA21a is the first V-ATPase assembly factor identified in a multicellular eukaryote. Moreover, VMA21p acts as a dedicated ER escort chaperone, a class of substrate-specific accessory proteins so far not identified in higher plants.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Chaperoninas/biosíntesis , Chaperoninas/genética , Chaperoninas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Electroforesis en Gel de Poliacrilamida , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/enzimología , Aparato de Golgi/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Plásmidos , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , ATPasas de Translocación de Protón Vacuolares/biosíntesis , ATPasas de Translocación de Protón Vacuolares/genética
10.
Mol Biol Cell ; 29(18): 2156-2164, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29995586

RESUMEN

ATP6AP2 (also known as the [pro]renin receptor) is a type I transmembrane protein that can be cleaved into two fragments in the Golgi apparatus. While in Drosophila ATP6AP2 functions in the planar cell polarity (PCP) pathway, recent human genetic studies have suggested that ATP6AP2 could participate in the assembly of the V-ATPase in the endoplasmic reticulum (ER). Using a yeast model, we show here that the V-ATPase assembly factor Voa1 can functionally be replaced by Drosophila ATP6AP2. This rescue is even more efficient when coexpressing its binding partner ATP6AP1, indicating that these two proteins together fulfill Voa1 functions in higher organisms. Structure-function analyses in both yeast and Drosophila show that proteolytic cleavage is dispensable, while C-terminus-dependent ER retrieval is required for ATP6AP2 function. Accordingly, we demonstrate that both overexpression and lack of ATP6AP2 causes ER stress in Drosophila wing cells and that the induction of ER stress is sufficient to cause PCP phenotypes. In summary, our results suggest that full-length ATP6AP2 contributes to the assembly of the V-ATPase proton pore and that impairment of this function affects ER homeostasis and PCP signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Polaridad Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/genética , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
11.
Mol Biol Cell ; 14(4): 1610-23, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12686613

RESUMEN

Multisubunit tethering complexes may contribute to the specificity of membrane fusion events by linking transport vesicles to their target membrane in an initial recognition event that promotes SNARE assembly. However, the interactions that link tethering factors to the other components of the vesicle fusion machinery are still largely unknown. We have previously identified three subunits of a Golgi-localized complex (the Vps52/53/54 complex) that is required for retrograde transport to the late Golgi. This complex interacts with a Rab and a SNARE protein found at the late Golgi and is related to two other multisubunit tethering complexes: the COG complex and the exocyst. Here we show that the Vps52/53/54 complex has an additional subunit, Vps51p. All four members of this tetrameric GARP (Golgi-associated retrograde protein) complex are required for two distinct retrograde transport pathways, from both early and late endosomes, back to the TGN. vps51 mutants exhibit a distinct phenotype suggestive of a regulatory role. Indeed, we find that Vps51p mediates the interaction between Vps52/53/54 and the t-SNARE Tlg1p. The binding of this small, coiled-coil protein to the conserved N-terminal domain of the t-SNARE therefore provides a crucial link between components of the tethering and the fusion machinery.


Asunto(s)
Proteínas Portadoras , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Transporte Biológico Activo , Clonación Molecular , Endosomas/metabolismo , Sustancias Macromoleculares , Fusión de Membrana/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Biológicos , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
12.
Mol Biol Cell ; 14(5): 1868-81, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12802061

RESUMEN

Intracellular membrane fusion requires that membrane-bound soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins on both vesicle and target membranes form a highly specific complex necessary to bring the membranes close in space. Ykt6p is a yeast R-SNARE protein that has been implicated in retrograde transport to the cis-Golgi compartment. Ykt6p has been also been found to fractionate with vacuole membranes and participate in a vacuolar SNARE complex in homotypic vacuole fusion. To investigate the role of Ykt6p in membrane traffic to the vacuole we generated temperature-sensitive mutations in YKT6. One mutation produces an early Golgi block to secretion, and overexpression of the SNARE protein Sft1p suppresses the growth and secretion defects of this mutation. These results are consistent with Ykt6p and Sft1p participating in a SNARE complex associated with retrograde transport to the cis-Golgi. A second set of mutations in YKT6 specifically affects post-Golgi membrane traffic to the vacuole, and the effects of these mutations are not suppressed by Sft1p overexpression. Defects are seen in carboxypeptidase Y sorting, alkaline phosphatase transport, and aminopeptidase I delivery, and in one mutant, overexpression of the SNARE protein Nyv1p suppresses the alkaline phosphatase transport defect. By mutationally separating early and late requirements for Ykt6p, our findings have revealed that Ykt6p is a R-SNARE protein that functions directly in the three biosynthetic pathways to the vacuole.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular , Fosfatasa Alcalina/metabolismo , Transporte Biológico Activo/fisiología , Catepsina A/metabolismo , Proteínas de la Membrana/genética , Mutación , Proteínas Qc-SNARE , Proteínas R-SNARE , Proteínas SNARE , Temperatura
13.
Mol Biol Cell ; 15(11): 5075-91, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15356264

RESUMEN

The Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex composed of a peripheral membrane sector (V1) responsible for ATP hydrolysis and an integral membrane sector (V0) required for proton translocation. Biogenesis of V0 requires an endoplasmic reticulum (ER)-localized accessory factor, Vma21p. We found that in vma21Delta cells, the major proteolipid subunit of V0 failed to interact with the 100-kDa V0 subunit, Vph1p, indicating that Vma21p is necessary for V0 assembly. Immunoprecipitation of Vma21p from wild-type membranes resulted in coimmunoprecipitation of all five V0 subunits. Analysis of vmaDelta strains showed that binding of V0 subunits to Vma21p was mediated by the proteolipid subunit Vma11p. Although Vma21p/proteolipid interactions were independent of Vph1p, Vma21p/Vph1p association was dependent on all other V0 subunits, indicating that assembly of V0 occurs in a defined sequence, with Vph1p recruitment into a Vma21p/proteolipid/Vma6p complex representing the final step. An in vitro assay for ER export was used to demonstrate preferential packaging of the fully assembled Vma21p/proteolipid/Vma6p/Vph1p complex into COPII-coated transport vesicles. Pulse-chase experiments showed that the interaction between Vma21p and V0 was transient and that Vma21p/V0 dissociation was concomitant with V0/V1 assembly. Blocking ER export in vivo stabilized the interaction between Vma21p and V0 and abrogated assembly of V0/V1. Although a Vma21p mutant lacking an ER-retrieval signal remained associated with V0 in the vacuole, this interaction did not affect the assembly of vacuolar V0/V1 complexes. We conclude that Vma21p is not involved in regulating the interaction between V0 and V1 sectors, but that it has a crucial role in coordinating the assembly of V0 subunits and in escorting the assembled V0 complex into ER-derived transport vesicles.


Asunto(s)
Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , ATPasas de Translocación de Protón Vacuolares/química , Vesículas Cubiertas por Proteínas de Revestimiento/química , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Genotipo , Glicerol/química , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Protones , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Tiempo , ATPasas de Translocación de Protón Vacuolares/fisiología
14.
Biochim Biophys Acta ; 1744(3): 438-54, 2005 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-15913810

RESUMEN

The late Golgi compartment is a major protein sorting station in the cell. Secreted proteins, cell surface proteins, and proteins destined for endosomes or lysosomes must be sorted from one another at this compartment and targeted to their correct destinations. The molecular details of protein trafficking pathways from the late Golgi to the endosomal system are becoming increasingly well understood due in part to information obtained by genetic analysis of yeast. It is now clear that proteins identified in yeast have functional homologues (orthologues) in higher organisms. We will review the molecular mechanisms of protein targeting from the late Golgi to endosomes and to the vacuole (the equivalent of the mammalian lysosome) of the budding yeast Saccharomyces cerevisiae.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Endosomas/metabolismo , Fusión de Membrana , Proteínas de la Membrana/genética , Mutación , Transporte de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Nat Commun ; 7: 11600, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27231034

RESUMEN

The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function.


Asunto(s)
Disfunción Cognitiva/genética , Síndromes de Inmunodeficiencia/genética , Hepatopatías/genética , Mutación Missense , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Disfunción Cognitiva/metabolismo , Salud de la Familia , Glicosilación , Humanos , Síndromes de Inmunodeficiencia/metabolismo , Lactante , Hepatopatías/metabolismo , Masculino , Homología de Secuencia de Aminoácido , ATPasas de Translocación de Protón Vacuolares/deficiencia , Adulto Joven
16.
Dev Cell ; 27(4): 462-8, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24286827

RESUMEN

Studies of homotypic vacuole-vacuole fusion in the yeast Saccharomyces cerevisiae have been instrumental in determining the cellular machinery required for eukaryotic membrane fusion and have implicated the vacuolar H(+)-ATPase (V-ATPase). The V-ATPase is a multisubunit, rotary proton pump whose precise role in homotypic fusion is controversial. Models formulated from in vitro studies suggest that it is the proteolipid proton-translocating pore of the V-ATPase that functions in fusion, with further studies in worms, flies, zebrafish, and mice appearing to support this model. We present two in vivo assays and use a mutant V-ATPase subunit to establish that it is the H(+)-translocation/vacuole acidification function, rather than the physical presence of the V-ATPase, that promotes homotypic vacuole fusion in yeast. Furthermore, we show that acidification of the yeast vacuole in the absence of the V-ATPase rescues vacuole-fusion defects. Our results clarify the in vivo requirements of acidification for membrane fusion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Fusión de Membrana/fisiología , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/metabolismo , Animales , Arabidopsis/metabolismo , Fluorescencia , Concentración de Iones de Hidrógeno , Ratones , Mutación/genética , Bombas de Protones , Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/genética
17.
Genetics ; 187(3): 771-83, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21196517

RESUMEN

The function of the vacuolar H(+)-ATPase (V-ATPase) enzyme complex is to acidify organelles; this process is critical for a variety of cellular processes and has implications in human disease. There are five accessory proteins that assist in assembly of the membrane portion of the complex, the V(0) domain. To identify additional elements that affect V-ATPase assembly, trafficking, or enzyme activity, we performed a genome-wide enhancer screen in the budding yeast Saccharomyces cerevisiae with two mutant assembly factor alleles, VMA21 with a dysfunctional ER retrieval motif (vma21QQ) and vma21QQ in combination with voa1Δ, a nonessential assembly factor. These alleles serve as sensitized genetic backgrounds that have reduced V-ATPase enzyme activity. Genes were identified from a variety of cellular pathways including a large number of trafficking-related components; we characterized two redundant gene pairs, HPH1/HPH2 and ORM1/ORM2. Both sets demonstrated synthetic growth defects in combination with the vma21QQ allele. A loss of either the HPH or ORM gene pairs alone did not result in a decrease in vacuolar acidification or defects in V-ATPase assembly. While the Hph proteins are not required for V-ATPase function, Orm1p and Orm2p are required for full V-ATPase enzyme function. Consistent with the documented role of the Orm proteins in sphingolipid regulation, we have found that inhibition of sphingolipid synthesis alleviates Orm-related growth defects.


Asunto(s)
Elementos de Facilitación Genéticos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Esfingolípidos/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Genoma Fúngico , Péptidos y Proteínas de Señalización Intracelular/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/enzimología , Vacuolas/genética , Vacuolas/metabolismo
18.
Mol Biol Cell ; 22(17): 3176-91, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21737673

RESUMEN

The vacuolar-type, proton-translocating ATPase (V-ATPase) is a multisubunit enzyme responsible for organelle acidification in eukaryotic cells. Many organisms have evolved V-ATPase subunit isoforms that allow for increased specialization of this critical enzyme. Differential targeting of the V-ATPase to specific subcellular organelles occurs in eukaryotes from humans to budding yeast. In Saccharomyces cerevisiae, the two subunit a isoforms are the only difference between the two V-ATPase populations. Incorporation of Vph1p or Stv1p into the V-ATPase dictates the localization of the V-ATPase to the vacuole or late Golgi/endosome, respectively. A duplication event within fungi gave rise to two subunit a genes. We used ancestral gene reconstruction to generate the most recent common ancestor of Vph1p and Stv1p (Anc.a) and tested its function in yeast. Anc.a localized to both the Golgi/endosomal network and vacuolar membrane and acidified these compartments as part of a hybrid V-ATPase complex. Trafficking of Anc.a did not require retrograde transport from the late endosome to the Golgi that has evolved for retrieval of the Stv1p isoform. Rather, Anc.a localized to both structures through slowed anterograde transport en route to the vacuole. Our results suggest an evolutionary model that describes the differential localization of the two yeast V-ATPase isoforms.


Asunto(s)
Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Secuencia de Consenso , Endosomas/metabolismo , Eliminación de Gen , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Transporte de Proteínas , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/metabolismo
19.
Mol Biol Cell ; 21(23): 4057-60, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21115849

RESUMEN

In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this "class E compartment" contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Historia del Siglo XX , Cuerpos Multivesiculares/genética , Mutación , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Vacuolas/ultraestructura , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA