Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 186(7): 1337-1351.e20, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36870332

RESUMEN

Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as ß-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Glicósido Hidrolasas/metabolismo , Glucosinolatos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Insectos
2.
New Phytol ; 240(4): 1484-1496, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37598308

RESUMEN

The links between wound-response electrical signalling and the activation of jasmonate synthesis are unknown. We investigated damage-response remodelling of jasmonate precursor pools in the Arabidopsis thaliana leaf vasculature. Galactolipids and jasmonate precursors in primary veins from undamaged and wounded plants were analysed using MS-based metabolomics and NMR. In parallel, DAD1-LIKE LIPASEs (DALLs), which control the levels of jasmonate precursors in veins, were identified. A novel galactolipid containing the jasmonate precursor 12-oxo-phytodienoic acid (OPDA) was identified in veins: sn-2-O-(cis-12-oxo-phytodienoyl)-sn-3-O-(ß-galactopyranosyl) glyceride (sn-2-OPDA-MGMG). Lower levels of sn-1-OPDA-MGMG were also detected. Vascular OPDA-MGMGs, sn-2-18:3-MGMG and free OPDA pools were reduced rapidly in response to damage-activated electrical signals. Reduced function dall2 mutants failed to build resting vascular sn-2-OPDA-MGMG and OPDA pools and, upon wounding, dall2 produced less jasmonoyl-isoleucine (JA-Ile) than the wild-type. DALL3 acted to suppress excess JA-Ile production after wounding, whereas dall2 dall3 double mutants strongly reduce jasmonate signalling in leaves distal to wounds. LOX6 and DALL2 function to produce OPDA and the non-bilayer-forming lipid sn-2-OPDA-MGMG in the primary vasculature. Membrane depolarizations trigger rapid depletion of these molecules. We suggest that electrical signal-dependent lipid phase changes help to initiate vascular jasmonate synthesis in wounded leaves.


Asunto(s)
Arabidopsis , Oxilipinas , Ciclopentanos , Arabidopsis/fisiología
3.
New Phytol ; 236(6): 2189-2201, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36089902

RESUMEN

Arabidopsis Clade 3 GLUTAMATE RECEPTOR-LIKEs (GLRs) are primary players in wound-induced systemic signaling. Previous studies focused on dissecting their ligand-activated channel properties involving extracellular and membrane-related domains. Here, we report that the carboxy-terminal tails (C-tails) of GLRs contain key elements controlling their function in wound signaling. GLR3.3 without its C-tail failed to rescue the glr3.3a mutant. We carried out a yeast two-hybrid screen to identify the C-tail interactors. We performed functional studies of the interactor by measuring electrical signals and defense responses. Then we mapped their binding sites and evaluated the impact of the sites on GLR functions. IMPAIRED SUCROSE INDUCTION 1 (ISI1) interacted with GLR3.3. Enhanced electrical activity was detected in reduced function isi1 mutants in a GLR3.3-dependent manner. isi1 mutants were slightly more resistant to insect feeding than the wild-type. Furthermore, a triresidue motif RFL in the GLR3.3 C-tail binds to ISI1 in yeast. Finally, we demonstrated that FL residues were conserved across GLRs and functionally required. Our study provides new insights into the functions of GLR C-tails, reveals parallels with the ionotropic glutamate receptor regulation in animal cells, and may enable rational design of strategies to engineer GLRs for future practical applications.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 116(51): 26066-26071, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31792188

RESUMEN

Slow wave potentials (SWPs) are damage-induced electrical signals which, based on experiments in which organs are burned, have been linked to rapid increases in leaf or stem thickness. The possibility that pressure surges in injured xylem underlie these events has been evoked frequently. We sought evidence for insect feeding-induced positive pressure changes in the petioles of Arabidopsis thaliana Instead, we found that petiole surfaces of leaves distal to insect-feeding sites subsided. We also found that insect damage induced longer-duration downward leaf movements in undamaged leaves. The transient petiole deformations were contemporary with and dependent on the SWP. We then investigated if mutants that affect the xylem, which has been implicated in SWP transmission, might modify SWP architecture. irregular xylem mutants strongly affected SWP velocity and kinetics and, in parallel, restructured insect damage-induced petiole deformations. Together, with force change measurements on the primary vein, the results suggest that extravascular water fluxes accompany the SWP. Moreover, petiole deformations in Arabidopsis mimic parts of the spectacular distal leaf collapse phase seen in wounded Mimosa pudica We genetically link electrical signals to organ movement and deformation and suggest an evolutionary origin of the large leaf movements seen in wounded Mimosa.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/parasitología , Insectos/fisiología , Mimosa/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/parasitología , Animales , Estimulación Eléctrica , Electricidad , Cinética , Larva/fisiología , Lepidópteros/fisiología , Fenómenos Fisiológicos de las Plantas , Xilema
5.
Plant Physiol ; 184(2): 1172-1180, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32669418

RESUMEN

Wound-response plant growth restriction requires the synthesis of potent mediators called jasmonates (JAs). Four 13-lipoxygenases (13-LOXs) produce JA precursors in Arabidopsis (Arabidopsis thaliana) leaves, but the 13-LOXs responsible for growth restriction have not yet been identified. Through loss-of-function genetic analyses, we identified LOX3 and LOX4 as the principal 13-LOXs responsible for vegetative growth restriction after repetitive wounding. Additional genetic studies were carried out in the gain-of-function fatty acid oxygenation 2 (fou2) mutant that, even when undamaged, shows JA-dependent leaf growth restriction. The fou2 lox3 lox4 triple mutant suppressed the fou2 JA-dependent growth phenotype, confirming that LOX3 and LOX4 function in leaf growth restriction. The fou2 mutation affects the TWO PORE CHANNEL1 (TPC1) ion channel. Additional genetic approaches based on this gene were used to further investigate LOX3 function in relation to leaf growth. To activate LOX3-dependent JA production in unwounded plants, we employed hyperactive TPC1 variants. Expression of the TPC1ΔCa i variant in phloem companion cells caused strongly reduced rosette growth in the absence of wounding. Summarizing, in parallel to their established roles in male reproductive development in Arabidopsis, LOX3 and LOX4 control leaf growth rates after wounding. The process of wound-response growth restriction can be recapitulated in unwounded plants when the LOX3 pathway is activated genetically using a hyperactive vacuolar cation channel.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/parasitología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Spodoptera/parasitología , Animales , Arabidopsis/crecimiento & desarrollo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Mutación , Fenotipo
6.
Proc Natl Acad Sci U S A ; 115(40): 10178-10183, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30228123

RESUMEN

The identity of the cell files necessary for the leaf-to-leaf transmission of wound signals plants has been debated for decades. In Arabidopsis, wounding initiates the glutamate receptor-like (GLR)-dependent propagation of membrane depolarizations that lead to defense gene activation. Using a vein extraction procedure we found pools of GLR-fusion proteins in endomembranes in phloem sieve elements and/or in xylem contact cells. Strikingly, only double mutants that eliminated GLRs from both of these spatially separated cell types strongly attenuated leaf-to-leaf electrical signaling. glr3.3 mutants were also compromised in their defense against herbivores. Since wounding is known to cause increases in cytosolic calcium, we monitored electrical signals and Ca2+ transients simultaneously. This revealed that wound-induced membrane depolarizations in the wild-type preceded cytosolic Ca2+ maxima. The axial and radial distributions of calcium fluxes were differentially affected in each glr mutant. Resolving a debate over which cell types are necessary for electrical signaling between leaves, we show that phloem sieve elements and xylem contact cells function together in this process.


Asunto(s)
Arabidopsis/metabolismo , Señalización del Calcio , Potenciales de la Membrana , Enfermedades de las Plantas , Hojas de la Planta/metabolismo
7.
Plant Physiol ; 169(3): 2244-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26338953

RESUMEN

Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lipooxigenasa/metabolismo , Lipooxigenasas/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Lipooxigenasa/genética , Lipooxigenasas/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Xilema/enzimología , Xilema/genética , Xilema/fisiología
8.
Proc Natl Acad Sci U S A ; 110(38): 15473-8, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003128

RESUMEN

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant's ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Plantones/crecimiento & desarrollo , Transducción de Señal/fisiología , Análisis de Varianza , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cartilla de ADN , Flores/genética , Flores/crecimiento & desarrollo , Componentes del Gen , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Nucleares/genética , Raíces de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Plantones/metabolismo
9.
Curr Biol ; 32(11): 2517-2528.e6, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413240

RESUMEN

Recurrent damage by lepidopteran folivores triggers repeated leaf-to-leaf electrical signaling. We found that the ability to propagate electrical signals-called slow wave potentials-was unexpectedly robust and was maintained in plants that had experienced severe damage. We sought genes that maintain tissue excitability during group insect attack. When Arabidopsis thaliana P-Type II Ca2+-ATPase mutants were mechanically wounded, all mutants tested displayed leaf-to-leaf electrical signals. However, when the auto-inhibited Ca2+-ATPase double-mutant aca10 aca12 was attacked by Spodoptera littoralis caterpillars, electrical signaling failed catastrophically, and the insects consumed these plants rapidly. The attacked double mutant displayed petiole base deformation and chlorosis, which spread acropetally into laminas and led to senescence. A phloem-feeding aphid recapitulated these effects, implicating the vasculature in electrical signaling failure. Consistent with this, ACA10 expressed in phloem companion cells in an aca10 aca12 background rescued electrical signaling and defense during protracted S. littoralis attack. When expressed in xylem contact cells, ACA10 partially rescued these phenotypes. Extending our analyses, we found that prolonged darkness also caused wound-response electrical signaling failure in aca10 aca12 mutants. Our results lead to a model in which the plant vasculature acts as a capacitor that discharges temporarily when leaves are subjected to energy-depleting stresses. Under these conditions, ACA10 and ACA12 function allows the restoration of vein cell membrane potentials. In the absence of these gene functions, vascular cell excitability can no longer be restored efficiently. Additionally, this work demonstrates that non-invasive electrophysiology is a powerful tool for probing early events underlying senescence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfatasas/metabolismo , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria , Insectos , Hojas de la Planta/fisiología
10.
J Biol Chem ; 284(3): 1702-8, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18996838

RESUMEN

In higher plants such as Arabidopsis thaliana, omega-3 trienoic fatty acids (TFAs), represented mainly by alpha-linolenic acid, serve as precursors of jasmonic acid (JA), a potent lipid signal molecule essential for defense. The JA-independent roles of TFAs were investigated by comparing the TFA- and JA-deficient fatty acid desaturase triple mutant (fad3-2 fad7-2 fad8 (fad3 fad7 fad8)) with the aos (allene oxide synthase) mutant that contains TFAs but is JA-deficient. When challenged with the fungus Botrytis, resistance of the fad3 fad7 fad8 mutant was reduced when compared with the aos mutant, suggesting that TFAs play a role in cell survival independently of being the precursors of JA. An independent genetic approach using the lesion mimic mutant accelerated cell death2 (acd2-2) confirmed the importance of TFAs in containing lesion spread, which was increased in the lines in which the fad3 fad7 fad8 and acd2-2 mutations were combined when compared with the aos acd2-2 lines. Malondialdehyde, found to result from oxidative TFA fragmentation during lesion formation, was measured by gas chromatography-mass spectrometry. Its levels correlated with the survival of the tissue. Furthermore, plants lacking TFAs overproduced salicylic acid (SA), hydrogen peroxide, and transcripts encoding several SA-regulated and SA biosynthetic proteins. The data suggest a physiological role for TFAs as sinks for reactive oxygen species.


Asunto(s)
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido alfa-Linolénico/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Malondialdehído/metabolismo , Mutación , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Ácido alfa-Linolénico/genética
11.
Plant Cell ; 19(8): 2470-83, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17675405

RESUMEN

Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Oxilipinas/farmacología , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
12.
J Biol Chem ; 282(49): 35749-56, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17928299

RESUMEN

Malondialdehyde (MDA) is a small, ubiquitous, and potentially toxic aldehyde that is produced in vivo by lipid oxidation and that is able to affect gene expression. Tocopherol deficiency in the vitamin E2 mutant vte2-1 of Arabidopsis thaliana leads to massive lipid oxidation and MDA accumulation shortly after germination. MDA accumulation correlates with a strong visual phenotype (growth reduction, cotyledon bleaching) and aberrant GST1 (glutathione S-transferase 1) expression. We suppressed MDA accumulation in the vte2-1 background by genetically removing tri-unsaturated fatty acids. The resulting quadruple mutant, fad3-2 fad7-2 fad8 vte2-1, did not display the visual phenotype or the aberrant GST1 expression observed in vte2-1. Moreover, cotyledon bleaching in vte2-1 was chemically phenocopied by treatment of wild-type plants with MDA. These data suggest that products of tri-unsaturated fatty acid oxidation underlie the vte2-1 seedling phenotype, including cellular toxicity and gene regulation properties. Generation of the quadruple mutant facilitated the development of an in situ fluorescence assay based on the formation of adducts of MDA with 2-thiobarbituric acid at 37 degrees C. Specificity was verified by measuring pentafluorophenylhydrazine derivatives of MDA and by liquid chromatography analysis of MDA-2-thiobarbituric acid adducts. Potentially applicable to other organisms, this method allowed the localization of MDA pools throughout the body of Arabidopsis and revealed an undiscovered pool of the compound unlikely to be derived from trienoic fatty acids in the vicinity of the root tip quiescent center.


Asunto(s)
Arabidopsis/metabolismo , Germinación , Malondialdehído/metabolismo , Meristema/metabolismo , Tocoferoles , Transferasas Alquil y Aril/genética , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos , Regulación Enzimológica de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Glutatión Transferasa/biosíntesis , Glutatión Transferasa/genética , Meristema/genética , Oxidación-Reducción , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tiobarbitúricos/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Tocoferoles/metabolismo
13.
Plant J ; 34(2): 205-16, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12694595

RESUMEN

Compounds containing alpha,beta-unsaturated carbonyl groups are increasingly implicated as potent regulators of gene expression; some are powerful cytotoxins known to accumulate at the site of lesion formation in host-pathogen interactions. We used a robust measurement of photosynthetic efficiency to quantify the toxicity of a variety of lipid derivatives in Arabidopsis leaves. Small alpha,beta-unsaturated carbonyl compounds (e.g. acrolein and methyl vinyl ketone) were highly active and proved to be potent stimulators of expression of the pathogenesis-related gene HEL (PR4). These small volatile electrophiles were far more active than larger alkenal homologs like 2(E)-hexenal, and activated HEL expression in a manner independent of salicylate, ethylene, and jasmonate production/perception. Electrophile treatment massively increased the levels of unesterified cyclopentenone jasmonates, which themselves are electrophiles. Patterns of gene expression in response to electrophile treatment and in response to avirulent bacteria were compared, which revealed strikingly similar transcript profiles. The results broaden the range of known biologic effects of reactive electrophile species to include the activation of a pathogenesis-related gene (HEL) and genes involved in metabolism. Electrophiles can act as mediators of both genetic and biochemical effects on core defense signal transduction.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lípidos/farmacología , Arabidopsis/microbiología , Fluorescencia , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Lípidos/toxicidad , Fotosíntesis/efectos de los fármacos , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA