Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(11): 2021-2032, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36788028

RESUMEN

Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid. Maps of movement representations were derived using intracortical microstimulation techniques in primary motor cortex (M1), ventral premotor cortex (PMv), and dorsal premotor cortex (PMd) in 14 adult squirrel monkeys before and after a focal infarct in the M1 distal forelimb area. Maps were derived at baseline and at either 2 (n = 7) or 3 weeks (n = 7) postinfarct. In PMv the forelimb maps remained unchanged at 2 weeks but contracted significantly (-42.4%) at 3 weeks. In PMd the forelimb maps expanded significantly (+110.6%) at 2 weeks but contracted significantly (-57.4%) at 3 weeks. Motor deficits were equivalent at both time points. These results highlight two features of plasticity after M1 lesions. First, significant contraction of distal forelimb motor maps in both PMv and PMd is evident by 3 weeks. Second, an unpredictable nonlinear pattern of reorganization occurs in the distal forelimb representation in PMd, first expanding at 2 weeks, and then contracting at 3 weeks postinjury. Together with previous results demonstrating reliable map expansions in PMv several weeks to months after M1 injury, the subacute time period may represent a critical window for the timing of therapeutic interventions.SIGNIFICANCE STATEMENT The relationship between motor recovery and motor map reorganization after cortical injury has rarely been examined in acute/subacute periods. In nonhuman primates, premotor maps were examined at 2 and 3 weeks after injury to primary motor cortex. Although maps are known to expand late after injury, the present study demonstrates early map expansion at 2 weeks (dorsal premotor cortex) followed by contraction at 3 weeks (dorsal and ventral premotor cortex). This nonlinear map reorganization during a time of gradual behavioral recovery suggests that the relationship between map plasticity and motor recovery is much more complex than previously thought. It also suggests that rehabilitative motor training may have its most potent effects during this early dynamic phase of map reorganization.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Animales , Femenino , Masculino , Corteza Motora/fisiología , Saimiri , Accidente Cerebrovascular/patología , Movimiento/fisiología , Infarto/patología
2.
J Neuroinflammation ; 21(1): 205, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154085

RESUMEN

INTRODUCTION: The Appalachia region of North America is known to have significant health disparities, specifically, worse risk factors and outcomes for stroke. Appalachians are more likely to have comorbidities related to stroke, such as diabetes, obesity, and tobacco use, and are often less likely to have stroke interventions, such as mechanical thrombectomy (MT), for emergent large vessel occlusion (ELVO). As our Comprehensive Stroke Center directly serves stroke subjects from both Appalachian and non-Appalachian areas, inflammatory proteomic biomarkers were identified associated with stroke outcomes specific to subjects residing in Appalachia. METHODS: There were 81 subjects that met inclusion criteria for this study. These subjects underwent MT for ELVO, and carotid arterial blood samples acquired at time of intervention were sent for proteomic analysis. Samples were processed in accordance with the Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC; clinicaltrials.gov; NCT03153683). Statistical analyses were utilized to examine whether relationships between protein expression and outcomes differed by Appalachian status for functional (NIH Stroke Scale; NIHSS and Modified Rankin Score; mRS), and cognitive outcomes (Montreal Cognitive Assessment; MoCA). RESULTS: No significant differences were found in demographic data or co-morbidities when comparing Appalachian to non-Appalachian subjects. However, time from stroke onset to treatment (last known normal) was significantly longer and edema volume significantly higher in patients from Appalachia. Further, when comparing Appalachian to non-Appalachian subjects, there were significant unadjusted differences in the NIHSS functional outcome. A comprehensive analysis of 184 proteins from Olink proteomic (92 Cardiometabolic and 92 Inflammation panels) showed that the association between protein expression outcomes significantly differed by Appalachian status for seven proteins for the NIHSS, two proteins for the MoCA, and three for the mRS. CONCLUSION: Our study utilizes an ELVO tissue bank and registry to investigate the intracranial/intravascular proteomic environment occurring at the time of thrombectomy. We found that patients presenting from Appalachian areas have different levels of proteomic expression at the time of MT when compared to patients presenting from non-Appalachian areas. These proteins differentially relate to stroke outcome and could be used as prognostic biomarkers, or as targets for novel therapies. The identification of a disparate proteomic response in Appalachian patients provides initial insight to the biological basis for health disparity. Nevertheless, further investigations through community-based studies are imperative to elucidate the underlying causes of this differential response.


Asunto(s)
Accidente Cerebrovascular Isquémico , Proteómica , Trombectomía , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Región de los Apalaches/epidemiología , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/cirugía , Trombectomía/tendencias , Trombectomía/métodos , Resultado del Tratamiento
3.
J Neuroinflammation ; 21(1): 161, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915059

RESUMEN

BACKGROUND: Pediatric acute transverse myelitis (ATM) accounts for 20-30% of children presenting with a first acquired demyelinating syndrome (ADS) and may be the first clinical presentation of a relapsing ADS such as multiple sclerosis (MS). B cells have been strongly implicated in the pathogenesis of adult MS. However, little is known about B cells in pediatric MS, and even less so in pediatric ATM. Our lab previously showed that plasmablasts (PB), the earliest B cell subtype producing antibody, are expanded in adult ATM, and that these PBs produce self-reactive antibodies that target neurons. The goal of this study was to examine PB frequency and phenotype, immunoglobulin selection, and B cell receptor reactivity in pediatric patients presenting with ATM to gain insight to B cell involvement in disease. METHODS: We compared the PB frequency and phenotype of 5 pediatric ATM patients and 10 pediatric healthy controls (HC) and compared them to previously reported adult ATM patients using cytometric data. We purified bulk IgG from the plasma samples and cloned 20 recombinant human antibodies (rhAbs) from individual PBs isolated from the blood. Plasma-derived IgG and rhAb autoreactivity was measured by mean fluorescence intensity (MFI) in neurons and astrocytes of murine brain or spinal cord and primary human astrocytes. We determined the potential impact of these rhAbs on astrocyte health by measuring stress and apoptotic response. RESULTS: We found that pediatric ATM patients had a reduced frequency of peripheral blood PB. Serum IgG autoreactivity to neurons in EAE spinal cord was similar in the pediatric ATM patients and HC. However, serum IgG autoreactivity to astrocytes in EAE spinal cord was reduced in pediatric ATM patients compared to pediatric HC. Astrocyte-binding strength of rhAbs cloned from PBs was dependent on somatic hypermutation accumulation in the pediatric ATM cohort, but not HC. A similar observation in predilection for astrocyte binding over neuron binding of individual antibodies cloned from PBs was made in EAE brain tissue. Finally, exposure of human primary astrocytes to these astrocyte-binding antibodies increased astrocytic stress but did not lead to apoptosis. CONCLUSIONS: Discordance in humoral immune responses to astrocytes may distinguish pediatric ATM from HC.


Asunto(s)
Astrocitos , Mielitis Transversa , Humanos , Mielitis Transversa/inmunología , Animales , Femenino , Astrocitos/metabolismo , Astrocitos/inmunología , Niño , Ratones , Masculino , Adolescente , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Ratones Endogámicos C57BL , Células Cultivadas , Preescolar , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Médula Espinal/metabolismo , Médula Espinal/inmunología , Médula Espinal/patología
4.
Immun Ageing ; 21(1): 36, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867294

RESUMEN

BACKGROUND AND PURPOSE: The immune response changes during aging and the progression of Alzheimer's disease (AD) and related dementia (ADRD). Terminally differentiated effector memory T cells (called TEMRA) are important during aging and AD due to their cytotoxic phenotype and association with cognitive decline. However, it is not clear if the changes seen in TEMRAs are specific to AD-related cognitive decline specifically or are more generally correlated with cognitive decline. This study aimed to examine whether TEMRAs are associated with cognition and plasma biomarkers of AD, neurodegeneration, and neuroinflammation in a community-based cohort of older adults. METHODS: Study participants from a University of Kentucky Alzheimer's Disease Research Center (UK-ADRC) community-based cohort of aging and dementia were used to test our hypothesis. There were 84 participants, 44 women and 40 men. Participants underwent physical examination, neurological examination, medical history, cognitive testing, and blood collection to determine plasma biomarker levels (Aß42/Aß40 ratio, total tau, Neurofilament Light chain (Nf-L), Glial Fibrillary Acidic Protein (GFAP)) and to isolate peripheral blood mononuclear cells (PBMCs). Flow cytometry was used to analyze PBMCs from study participants for effector and memory T cell populations, including CD4+ and CD8+ central memory T cells (TCM), Naïve T cells, effector memory T cells (TEM), and effector memory CD45RA+ T cells (TEMRA) immune cell markers. RESULTS: CD8+ TEMRAs were positively correlated with Nf-L and GFAP. We found no significant difference in CD8+ TEMRAs based on cognitive scores and no associations between CD8+ TEMRAs and AD-related biomarkers. CD4+ TEMRAs were associated with cognitive impairment on the MMSE. Gender was not associated with TEMRAs, but it did show an association with other T cell populations. CONCLUSION: These findings suggest that the accumulation of CD8+ TEMRAs may be a response to neuronal injury (Nf-L) and neuroinflammation (GFAP) during aging or the progression of AD and ADRD. As our findings in a community-based cohort were not clinically-defined AD participants but included all ADRDs, this suggests that TEMRAs may be associated with changes in systemic immune T cell subsets associated with the onset of pathology.

5.
Neurobiol Dis ; 184: 106202, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330146

RESUMEN

Neurological conditions such as Alzheimer's disease (AD) and related dementias (ADRD) present with many challenges due to the heterogeneity of the related disease(s), making it difficult to develop effective treatments. Additionally, the progression of ADRD-related pathologies presents differently between men and women. With two-thirds of the population affected with ADRD being women, ADRD has presented itself with a bias toward the female population. However, studies of ADRD generally do not incorporate sex-based differences in investigating the development and progression of the disease, which is detrimental to understanding and treating dementia. Additionally, recent implications for the adaptive immune system in the development of ADRD bring in new factors to be considered as part of the disease, including sex-based differences in immune response(s) during ADRD development. Here, we review the sex-based differences of pathological hallmarks of ADRD presentation and progression, sex-based differences in the adaptive immune system and how it changes with ADRD, and the importance of precision medicine in the development of a more targeted and personalized treatment for this devastating and prevalent neurodegenerative condition.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/terapia , Demencia/terapia , Sistema Inmunológico
6.
BMC Neurol ; 23(1): 214, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280551

RESUMEN

BACKGROUND: Emergent Large Vessel Occlusion (ELVO) stroke causes devastating vascular events which can lead to significant cognitive decline and dementia. In the subset of ELVO subjects treated with mechanical thrombectomy (MT) at our institution, we aimed to identify systemic and intracranial proteins predictive of cognitive function at time of discharge and at 90-days. These proteomic biomarkers may serve as prognostic indicators of recovery, as well as potential targets for novel/existing therapeutics to be delivered during the subacute stage of stroke recovery. METHODS: At the University of Kentucky Center for Advanced Translational Stroke Sciences, the BACTRAC tissue registry (clinicaltrials.gov; NCT03153683) of human biospecimens acquired during ELVO stroke by MT is utilized for research. Clinical data are collected on each enrolled subject who meets inclusion criteria. Blood samples obtained during thrombectomy were sent to Olink Proteomics for proteomic expression values. Montreal Cognitive Assessments (MoCA) were evaluated with categorical variables using ANOVA and t-tests, and continuous variables using Pearson correlations. RESULTS: There were n = 52 subjects with discharge MoCA scores and n = 28 subjects with 90-day MoCA scores. Several systemic and intracranial proteins were identified as having significant correlations to discharge MoCA scores as well as 90-day MoCA scores. Highlighted proteins included s-DPP4, CCL11, IGFBP3, DNER, NRP1, MCP1, and COMP. CONCLUSION: We set out to identify proteomic predictors and potential therapeutic targets related to cognitive outcomes in ELVO subjects undergoing MT. Here, we identify several proteins which predicted MoCA after MT, which may serve as therapeutic targets to lessen post-stroke cognitive decline.


Asunto(s)
Arteriopatías Oclusivas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Proteómica , Resultado del Tratamiento , Trombectomía , Estudios Retrospectivos
7.
Proc Natl Acad Sci U S A ; 117(9): 4983-4993, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32051245

RESUMEN

Lymphocytes infiltrate the stroke core and penumbra and often exacerbate cellular injury. B cells, however, are lymphocytes that do not contribute to acute pathology but can support recovery. B cell adoptive transfer to mice reduced infarct volumes 3 and 7 d after transient middle cerebral artery occlusion (tMCAo), independent of changing immune populations in recipient mice. Testing a direct neurotrophic effect, B cells cocultured with mixed cortical cells protected neurons and maintained dendritic arborization after oxygen-glucose deprivation. Whole-brain volumetric serial two-photon tomography (STPT) and a custom-developed image analysis pipeline visualized and quantified poststroke B cell diapedesis throughout the brain, including remote areas supporting functional recovery. Stroke induced significant bilateral B cell diapedesis into remote brain regions regulating motor and cognitive functions and neurogenesis (e.g., dentate gyrus, hypothalamus, olfactory areas, cerebellum) in the whole-brain datasets. To confirm a mechanistic role for B cells in functional recovery, rituximab was given to human CD20+ (hCD20+) transgenic mice to continuously deplete hCD20+-expressing B cells following tMCAo. These mice experienced delayed motor recovery, impaired spatial memory, and increased anxiety through 8 wk poststroke compared to wild type (WT) littermates also receiving rituximab. B cell depletion reduced stroke-induced hippocampal neurogenesis and cell survival. Thus, B cell diapedesis occurred in areas remote to the infarct that mediated motor and cognitive recovery. Understanding the role of B cells in neuronal health and disease-based plasticity is critical for developing effective immune-based therapies for protection against diseases that involve recruitment of peripheral immune cells into the injured brain.


Asunto(s)
Encéfalo/metabolismo , Movimiento Celular/fisiología , Neurogénesis/fisiología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/metabolismo , Inmunidad Adaptativa , Animales , Linfocitos B/metabolismo , Encéfalo/patología , Cognición , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Humanos , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal , Neuronas/metabolismo
8.
J Neurochem ; 160(1): 100-112, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558059

RESUMEN

Regenerating Family Member 3 Alpha (REG3A) is a multifunctional protein with antimicrobial activity, and primarily secreted by the intestine and pancreas. Studies have shown an increased expression of REG3A in systemic inflammatory responses to acute injury and infection, but studies investigating REG3A during the pathogenesis of ischemic stroke are limited. The aims of this study were to examine the associations between arterial expression of REG3A and other arterial inflammatory proteins implicated in stroke pathogenesis, as well as associations between REG3A and markers of poor outcome for ischemic stroke. The University of Kentucky Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) protocol (clinicaltrials.gov NCT03153683) utilizes thrombectomy to isolate intracranial arterial blood (i.e. distal to thrombus) and systemic arterial blood (i.e. carotid). Samples were analyzed by Olink Proteomics for N = 42 subjects. Statistical analyses of plasma proteins included 2-sample t-tests, spearman and biserial correlations, and robust regression models to elucidate network signaling and association to clinical outcomes. Results indicated that levels of systemic REG3A were positively correlated with inflammatory proteins interleukin IL6 (R = 0.344, p = 0.030) and IL17C (R = 0.468, p = 0.002). 2-sided t- tests examining differences of systemic REG3A within quartiles of NIHSS admission score depicted significant differences between quartiles. Those with NIHSS scores corresponding to moderate and moderate-severe neurofunctional deficits had significantly higher levels of systemic REG3A compared to those with NIHSS scores corresponding to mild and mild-moderate neurofunctional deficits (p = 0.016). STRING analyses of proteins in each robust regression model demonstrated substantial networking between REG3A and other systemic proteins highly relevant to ischemic stroke. The present study provides novel data on systemic REG3A in the context of ischemic stroke. These results demonstrate the influential role of REG3A regarding surrogate functional and radiographic outcomes of stroke severity. Additionally, they provide novel insight into the role of REG3A and related proteins during the complex neuroinflammatory process of ischemic stroke. These data provide a foundation for future studies to investigate REG3A and related networking proteins as potential biomarkers with prognostic potential, as well as potential therapeutic targets.


Asunto(s)
Biomarcadores/sangre , Accidente Cerebrovascular Isquémico/patología , Proteínas Asociadas a Pancreatitis/sangre , Transducción de Señal/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Accidente Cerebrovascular Isquémico/sangre , Masculino , Persona de Mediana Edad , Pronóstico
9.
J Neurosci ; 40(5): 1162-1173, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31889008

RESUMEN

Recovery after stroke is a multicellular process encompassing neurons, resident immune cells, and brain-invading cells. Stroke alters the gut microbiome, which in turn has considerable impact on stroke outcome. However, the mechanisms underlying gut-brain interaction and implications for long-term recovery are largely elusive. Here, we tested the hypothesis that short-chain fatty acids (SCFAs), key bioactive microbial metabolites, are the missing link along the gut-brain axis and might be able to modulate recovery after experimental stroke. SCFA supplementation in the drinking water of male mice significantly improved recovery of affected limb motor function. Using in vivo wide-field calcium imaging, we observed that SCFAs induced altered contralesional cortex connectivity. This was associated with SCFA-dependent changes in spine and synapse densities. RNA sequencing of the forebrain cortex indicated a potential involvement of microglial cells in contributing to the structural and functional remodeling. Further analyses confirmed a substantial impact of SCFAs on microglial activation, which depended on the recruitment of T cells to the infarcted brain. Our findings identified that microbiota-derived SCFAs modulate poststroke recovery via effects on systemic and brain resident immune cells.SIGNIFICANCE STATEMENT Previous studies have shown a bidirectional communication along the gut-brain axis after stroke. Stroke alters the gut microbiota composition, and in turn, microbiota dysbiosis has a substantial impact on stroke outcome by modulating the immune response. However, until now, the mediators derived from the gut microbiome affecting the gut-immune-brain axis and the molecular mechanisms involved in this process were unknown. Here, we demonstrate that short-chain fatty acids, fermentation products of the gut microbiome, are potent and proregenerative modulators of poststroke neuronal plasticity at various structural levels. We identified that this effect was mediated via circulating lymphocytes on microglial activation. These results identify short-chain fatty acids as a missing link along the gut-brain axis and as a potential therapeutic to improve recovery after stroke.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Ácidos Grasos Volátiles/administración & dosificación , Accidente Cerebrovascular/inmunología , Animales , Encéfalo/metabolismo , Femenino , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/inmunología , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Transcriptoma/efectos de los fármacos
10.
J Neuroinflammation ; 18(1): 109, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33971895

RESUMEN

BACKGROUND: Emergent large vessel occlusion (ELVO) strokes are devastating ischemic vascular events for which novel treatment options are needed. Using vascular cell adhesion molecule 1 (VCAM1) as a prototype, the objective of this study was to identify proteomic biomarkers and network signaling functions that are potential therapeutic targets for adjuvant treatment for mechanical thrombectomy. METHODS: The blood and clot thrombectomy and collaboration (BACTRAC) study is a continually enrolling tissue bank and registry from stroke patients undergoing mechanical thrombectomy. Plasma proteins from intracranial (distal to clot) and systemic arterial blood (carotid) were analyzed by Olink Proteomics for N=42 subjects. Statistical analysis of plasma proteomics used independent sample t tests, correlations, linear regression, and robust regression models to determine network signaling and predictors of clinical outcomes. Data and network analyses were performed using IBM SPSS Statistics, SAS v 9.4, and STRING V11. RESULTS: Increased systemic (p<0.001) and intracranial (p=0.013) levels of VCAM1 were associated with the presence of hypertension. Intracranial VCAM1 was positively correlated to both infarct volume (p=0.032; r=0.34) and edema volume (p=0.026; r=0.35). The %∆ in NIHSS from admittance to discharge was found to be significantly correlated to both systemic (p=0.013; r = -0.409) and intracranial (p=0.011; r = -0.421) VCAM1 levels indicating elevated levels of systemic and intracranial VCAM1 are associated with reduced improvement of stroke severity based on NIHSS from admittance to discharge. STRING-generated analyses identified biologic functional descriptions as well as function-associated proteins from the predictive models of infarct and edema volume. CONCLUSIONS: The current study provides novel data on systemic and intracranial VCAM1 in relation to stroke comorbidities, stroke severity, functional outcomes, and the role VCAM1 plays in complex protein-protein signaling pathways. These data will allow future studies to develop predictive biomarkers and proteomic targets for drug development to improve our ability to treat a devastating pathology.


Asunto(s)
Biomarcadores/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Accidente Cerebrovascular Isquémico/cirugía , Masculino , Persona de Mediana Edad , Trombectomía , Molécula 1 de Adhesión Celular Vascular/análisis
11.
Brain Behav Immun ; 95: 502-513, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33964435

RESUMEN

OBJECTIVE: Stroke is a debilitating disorder with significant annual mortality and morbidity rates worldwide. Immune cells are recruited to the injured brain within hours after stroke onset and can exhibit either protective or detrimental effects on recovery. However, immune cells, including CD8 T cells, persist in the injured brain for weeks, suggesting a longer-term role for the adaptive immune system during functional recovery. The aim of this study was to determine if the delayed secondary diapedesis of CD8 T cells into the ischemic brain negatively impacts functional recovery after transient ischemic stroke in male mice. RESULTS: Mice exhibited an increased number of leukocytes in the ipsilesional hemispheres at 14 days (3-fold; p < 0.001) and 30 days (2.2-fold; p = 0.02) after transient middle cerebral artery occlusion (tMCAo) compared to 8 days post-tMCAo, at which time acute neuroinflammation predominantly resolves. Moreover, mice with higher ipsilesional CD8 T cells at 30 days (R2 = 0.52, p < 0.01) exhibited worse functional recovery. To confirm a detrimental role of chronic CD8 T cell diapedesis on recovery, peripheral CD8 T cells were depleted beginning 10 days post-tMCAo. Delayed CD8 T cell depletion improved motor recovery on the rotarod (F(1,28) = 4.264; p = 0.048) compared to isotype control-treated mice. CD8 T cell-depleted mice also exhibited 2-fold (p < 0.001) reduced leukocyte infiltration at 30 days post-tMCAo. Specifically, macrophage, neutrophil, and CD4 T cell numbers were reduced in the ipsilesional hemisphere of the CD8 T cell-depleted mice independent of inflammatory status of the post-stroke CNS (e.g. microglial phenotype and cytokine production). RNAseq identified a unique profile for brain infiltrating CD8 T cells at 30 days post-tMCAo, with 46 genes differentially expressed relative to CD8 T cells at 3 days post-tMCAo. CONCLUSION: Our data reveal a role for CD8 T cells in the chronic phase post-stroke that can be therapeutically targeted. We demonstrate long-term CD8 T cell recruitment into the ipsilesional hemisphere that affects both immune cell numbers present in the injured brain and functional recovery through one month after stroke onset.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Linfocitos T CD8-positivos , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , Migración Transendotelial y Transepitelial
12.
Nat Methods ; 14(2): 160-166, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27941784

RESUMEN

The precise manipulation of microcirculation in mice can facilitate mechanistic studies of brain injury and repair after ischemia, but this manipulation remains a technical challenge, particularly in conscious mice. We developed a technology that uses micromagnets to induce aggregation of magnetic nanoparticles to reversibly occlude blood flow in microvessels. This allowed induction of ischemia in a specific cortical region of conscious mice of any postnatal age, including perinatal and neonatal stages, with precise spatiotemporal control but without surgical intervention of the skull or artery. When combined with longitudinal live-imaging approaches, this technology facilitated the discovery of a feature of the ischemic cascade: selective loss of smooth muscle cells in juveniles but not adults shortly after onset of ischemia and during blood reperfusion.


Asunto(s)
Isquemia Encefálica/inducido químicamente , Isquemia Encefálica/fisiopatología , Nanopartículas de Magnetita/efectos adversos , Animales , Isquemia Encefálica/tratamiento farmacológico , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Células HEK293 , Hipocampo/efectos de los fármacos , Humanos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Ratones Endogámicos C57BL , Ratones Transgénicos , Microcirculación/efectos de los fármacos , Microvasos/efectos de los fármacos , Microvasos/fisiopatología
13.
Crit Care Med ; 47(3): e206-e213, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30640221

RESUMEN

OBJECTIVES: Extracorporeal membrane oxygenation provides short-term cardiopulmonary life support, but is associated with peripheral innate inflammation, disruptions in cerebral autoregulation, and acquired brain injury. We tested the hypothesis that extracorporeal membrane oxygenation also induces CNS-directed adaptive immune responses which may exacerbate extracorporeal membrane oxygenation-associated brain injury. DESIGN: A single center prospective observational study. SETTING: Pediatric and cardiac ICUs at a single tertiary care, academic center. PATIENTS: Twenty pediatric extracorporeal membrane oxygenation patients (0-14 yr; 13 females, 7 males) and five nonextracorporeal membrane oxygenation Pediatric Logistic Organ Dysfunction score matched patients INTERVENTIONS:: None. MEASUREMENTS AND MAIN RESULTS: Venous blood samples were collected from the extracorporeal membrane oxygenation circuit at day 1 (10-23 hr), day 3, and day 7 of extracorporeal membrane oxygenation. Flow cytometry quantified circulating innate and adaptive immune cells, and CNS-directed autoreactivity was detected using an in vitro recall response assay. Disruption of cerebral autoregulation was determined using continuous bedside near-infrared spectroscopy and acquired brain injury confirmed by MRI. Extracorporeal membrane oxygenation patients with acquired brain injury (n = 9) presented with a 10-fold increase in interleukin-8 over extracorporeal membrane oxygenation patients without brain injury (p < 0.01). Furthermore, brain injury within extracorporeal membrane oxygenation patients potentiated an inflammatory phenotype in adaptive immune cells and selective autoreactivity to brain peptides in circulating B cell and cytotoxic T cell populations. Correlation analysis revealed a significant relationship between adaptive immune responses of extracorporeal membrane oxygenation patients with acquired brain injury and loss of cerebral autoregulation. CONCLUSIONS: We show that pediatric extracorporeal membrane oxygenation patients with acquired brain injury exhibit an induction of pro-inflammatory cell signaling, a robust activation of adaptive immune cells, and CNS-targeting adaptive immune responses. As these patients experience developmental delays for years after extracorporeal membrane oxygenation, it is critical to identify and characterize adaptive immune cell mechanisms that target the developing CNS.


Asunto(s)
Inmunidad Adaptativa/inmunología , Lesiones Encefálicas/terapia , Encéfalo/inmunología , Oxigenación por Membrana Extracorpórea , Adolescente , Linfocitos B/inmunología , Lesiones Encefálicas/inmunología , Estudios de Casos y Controles , Niño , Preescolar , Descubrimiento de Drogas , Oxigenación por Membrana Extracorpórea/efectos adversos , Femenino , Citometría de Flujo , Humanos , Lactante , Recién Nacido , Inflamación/etiología , Inflamación/inmunología , Masculino , Puntuaciones en la Disfunción de Órganos , Proyectos Piloto , Linfocitos T Citotóxicos/inmunología
14.
Exerc Immunol Rev ; 25: 34-49, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30785868

RESUMEN

Individuals with amnestic mild cognitive impairment (aMCI) experience cognitive declines in learning and memory greater than expected for normal aging, and are at a high risk of dementia. We previously reported that sedentary aMCI patients exhibited neuroinflammation that correlated with brain amyloid beta (Aß) burden, as determined by 18F-florbetapir positron emission tomography (PET). These aMCI patients enrolled in a one-year randomized control trial (AETMCI, NCT01146717) to test the beneficial effects of 12 months of moderate-to-high intensity aerobic exercise training (AET) or stretching/toning (ST) control intervention on neurocognitive function. A subset of aMCI participants had PET imaging, cognitive testing, and immunophenotyping of cerebrospinal fluid (CSF) and peripheral blood after AET or ST interventions. As adaptive immune responses were similar between AET and ST groups, we combined AET/ST into a general 'physical activity' (PA) group and compared Aß burden, cognitive function, and adaptive immune cell subsets to sedentary lifestyle before intervention. We found that PAinduced immunomodulation of CD4+ and CD8+ T cells in CSF correlated with changes in Aß burden in brain regions associated with executive function. Furthermore, after PA, cognitive scores on tests of memory, processing speed, attention, verbal fluency, and executive function were associated with increased percent representation of circulating naïve B + T cells. We review the literature on aMCI-related cognition and immune changes as they relate to exercise, and highlight how our preliminary data suggest a complex interplay between the adaptive immune system, physical activity, cognition, and Aß burden in aMCI.


Asunto(s)
Inmunidad Adaptativa , Péptidos beta-Amiloides/metabolismo , Subgrupos de Linfocitos B/citología , Disfunción Cognitiva , Ejercicio Físico , Subgrupos de Linfocitos T/citología , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
J Immunol ; 196(4): 1541-9, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26764035

RESUMEN

The contribution of autoantibody-producing plasma cells in multiple sclerosis (MS) remains unclear. Anti-CD20 B cell depletion effectively reduces disease activity in MS patients, but it has a minimal effect on circulating autoantibodies and oligoclonal bands in the cerebrospinal fluid. Recently we reported that MEDI551, an anti-CD19 mAb, therapeutically ameliorates experimental autoimmune encephalomyelitis (EAE), the mouse model of MS. MEDI551 potently inhibits pathogenic adaptive immune responses, including depleting autoantibody-producing plasma cells. In the present study, we demonstrated that CD19 mAb treatment ameliorates EAE more effectively than does CD20 mAb. Myelin oligodendrocyte glycoprotein-specific Abs and short-lived and long-lived autoantibody-secreting cells were nearly undetectable in the CD19 mAb-treated mice, but they remained detectable in the CD20 mAb-treated mice. Interestingly, residual disease severity in the CD20 mAb-treated animals positively correlated with the frequency of treatment-resistant plasma cells in the bone marrow. Of note, treatment-resistant plasma cells contained a substantial proportion of CD19(+)CD20(-) plasma cells, which would have otherwise been targeted by CD19 mAb. These data suggested that CD19(+)CD20(-) plasma cells spared by anti-CD20 therapy likely contribute to residual EAE severity by producing autoreactive Abs. In patients with MS, we also identified a population of CD19(+)CD20(-) B cells in the cerebrospinal fluid that would be resistant to CD20 mAb treatment.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos CD19/inmunología , Antígenos CD20/inmunología , Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Células Plasmáticas/inmunología , Adulto , Animales , Anticuerpos Monoclonales/inmunología , Autoanticuerpos/análisis , Líquido Cefalorraquídeo/química , Líquido Cefalorraquídeo/citología , Líquido Cefalorraquídeo/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología
18.
Stroke ; 48(2): 452-458, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28028144

RESUMEN

BACKGROUND AND PURPOSE: Spreading depolarizations (SDs) may contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). We tested whether SD-inhibitor valproate reduces brain injury in an SAH rat model with and without experimental SD induction. METHODS: Rats were randomized in a 2×2 design and pretreated with valproate (200 mg/kg) or vehicle for 4 weeks. SAH was induced by endovascular puncture of the right internal carotid bifurcation. One day post-SAH, brain tissue damage was measured with T2-weighted magnetic resonance imaging, followed by cortical application of 1 mol/L KCl (to induce SDs) or NaCl (no SDs). Magnetic resonance imaging was repeated on day 3 followed by histology to confirm neuronal death. Neurological function was measured with an inclined slope test. RESULTS: In the groups with KCl application, lesion growth between days 1 and 3 was 57±73 mm3 in the valproate-treated versus 237±232 mm3 in the vehicle-treated group. In the groups without SD induction, lesion growth in the valproate- and vehicle-treated groups was 8±20 mm3 versus 27±52 mm3. On fitting a 2-way analysis of variance model, we found a significant interaction effect between treatment and KCl/NaCl application of 161 mm3 (P=0.04). Number and duration of SDs, mortality, and neurological function were not statistically significantly different between groups. Lesion growth on magnetic resonance imaging correlated to histological infarct volume (Spearman's rho =0.83; P=0.0004), with areas of lesion growth exhibiting reduced neuronal death compared with primary lesions. CONCLUSIONS: In our rat SAH model, valproate treatment significantly reduced brain lesion growth after KCl application. Future studies are needed to confirm that this protective effect is based on SD inhibition.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/prevención & control , Modelos Animales de Enfermedad , Hemorragia Subaracnoidea/diagnóstico por imagen , Hemorragia Subaracnoidea/tratamiento farmacológico , Ácido Valproico/uso terapéutico , Animales , Lesiones Encefálicas/etiología , Masculino , Ratas , Ratas Wistar , Hemorragia Subaracnoidea/complicaciones
19.
J Neuroinflammation ; 14(1): 149, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28750671

RESUMEN

BACKGROUND: We previously found that subjects with amnestic mild cognitive impairment exhibit a pro-inflammatory immune profile in the cerebrospinal fluid similar to multiple sclerosis, a central nervous system autoimmune disease. We therefore hypothesized that early neuroinflammation would reflect increases in brain amyloid burden during amnestic mild cognitive impairment. METHODS: Cerebrospinal fluid and blood samples were collected from 24 participants with amnestic mild cognitive impairment (12 men, 12 women; 66 ± 6 years; 0.5 Clinical Dementia Rating) enrolled in the AETMCI study. Analyses of cerebrospinal fluid and blood included immune profiling by multi-parameter flow cytometry, genotyping for apolipoprotein (APO)ε, and quantification of cytokine and immunoglobin levels. Amyloid (A)ß deposition was determined by 18F-florbetapir positron emission tomography. Spearman rank order correlations were performed to assess simple linear correlation for parameters including amyloid imaging, central and peripheral immune cell populations, and protein cytokine levels. RESULTS: Soluble Aß42 in the cerebrospinal fluid declined as Aß deposition increased overall and in the precuneous and posterior cingulate cortices. Lymphocyte profiling revealed a significant decline in T cell populations in the cerebrospinal fluid, specifically CD4+ T cells, as Aß deposition in the posterior cingulate cortex increased. In contrast, increased Aß burden correlated positively with increased memory B cells in the cerebrospinal fluid, which was exacerbated in APOε4 carriers. For peripheral circulating lymphocytes, only B cell populations decreased with Aß deposition in the precuneous cortex, as peripheral T cell populations did not correlate with changes in brain amyloid burden. CONCLUSIONS: Elevations in brain Aß burden associate with a shift from T cells to memory B cells in the cerebrospinal fluid of subjects with amnestic mild cognitive impairment in this exploratory cohort. These data suggest the presence of cellular adaptive immune responses during Aß accumulation, but further study needs to determine whether lymphocyte populations contribute to, or result from, Aß dysregulation during memory decline on a larger cohort collected at multiple centers. TRIAL REGISTRATION: AETMCI NCT01146717.


Asunto(s)
Inmunidad Adaptativa/fisiología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva , Citocinas/metabolismo , Linfocitos/patología , Anciano , Compuestos de Anilina/metabolismo , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/sangre , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/patología , Glicoles de Etileno/metabolismo , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones
20.
Acta Neuropathol ; 133(1): 43-60, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27730299

RESUMEN

Plasmablasts are a highly differentiated, antibody secreting B cell subset whose prevalence correlates with disease activity in Multiple Sclerosis (MS). For most patients experiencing partial transverse myelitis (PTM), plasmablasts are elevated in the blood at the first clinical presentation of disease (known as a clinically isolated syndrome or CIS). In this study we found that many of these peripheral plasmablasts are autoreactive and recognize primarily gray matter targets in brain tissue. These plasmablasts express antibodies that over-utilize immunoglobulin heavy chain V-region subgroup 4 (VH4) genes, and the highly mutated VH4+ plasmablast antibodies recognize intracellular antigens of neurons and astrocytes. Most of the autoreactive, highly mutated VH4+ plasmablast antibodies recognize only a portion of cortical neurons, indicating that the response may be specific to neuronal subgroups or layers. Furthermore, CIS-PTM patients with this plasmablast response also exhibit modest reactivity toward neuroantigens in the plasma IgG antibody pool. Taken together, these data indicate that expanded VH4+ peripheral plasmablasts in early MS patients recognize brain gray matter antigens. Peripheral plasmablasts may be participating in the autoimmune response associated with MS, and provide an interesting avenue for investigating the expansion of autoreactive B cells at the time of the first documented clinical event.


Asunto(s)
Autoanticuerpos/metabolismo , Linfocitos B/inmunología , Encéfalo/inmunología , Esclerosis Múltiple/inmunología , Células Plasmáticas/inmunología , Adulto , Anciano , Astrocitos/inmunología , Astrocitos/patología , Linfocitos B/patología , Encéfalo/patología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Sustancia Gris/inmunología , Sustancia Gris/patología , Humanos , Inmunoglobulina G/metabolismo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/patología , Neuronas/inmunología , Neuronas/patología , Células Plasmáticas/fisiología , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA