Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(4): 2203-2212, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36669833

RESUMEN

Antibody combination therapies have become viable therapeutic treatment options for certain severe diseases such as cancer. The co-formulation production approach is intrinsically associated with more complex drug product variant profiles and creates more challenges for analytical control of drug product quality. In addition to various individual quality attributes, those arising from the interactions between the antibodies also potentially emerge through co-formulation. In this study, we describe the development of a widely applicable multi-dimensional liquid chromatography coupled to tandem mass spectrometry method for antibody homo- versus hetero-aggregate characterization. The co-formulation of trastuzumab and pertuzumab was used, a challenging model system, comprising two monoclonal antibodies with very similar physicochemical properties. The data presented demonstrate the high stability of the co-formulation, where only minor aggregate formation is observed upon product storage and accelerated temperature or light-stress conditions. The results also show that the homo- and hetero-aggregates, formed in low and comparable proportions, are only marginally impacted by the formulation and product storage conditions. No preferential formation of hetero-aggregates, in comparison to the already existing pertuzumab and trastuzumab homo-aggregates, was observed.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Cromatografía Liquida , Anticuerpos Monoclonales/química , Trastuzumab/química
2.
Electrophoresis ; 42(11): 1209-1216, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33651405

RESUMEN

Oxidative damage of biopharmaceuticals during manufacturing and storage is a key concern throughout pharmaceutical development. However, few simple and robust analytical methods are available for the determination of oxidation sites. Here, the potential of affinity capillary electrophoresis (ACE) in the separation of proteins with oxidized methionine (Met) residues is shown. Silver(I) and gold(I) ions have the attribute to selectively form complexes with thioethers over sulfoxides. The addition of these ions to the BGE leads to a selective complexation of Met residues and, thus, to a change of charge allowing separation of species according to the different oxidation states of Met. The mechanisms of these interactions are discussed and binding constants for peptides containing Met with silver(I) are calculated. Additionally, the proposed method can be used as an indicator of oxidative stress in large proteins. The presented technique is easily accessible, economical, and has rapid analysis times, adding new approaches to the analytical toolbox of Met sulfoxide detection.


Asunto(s)
Oro , Metionina , Proteínas , Plata , Cationes , Electroforesis Capilar , Metionina/química , Oxidación-Reducción , Proteínas/química
3.
Electrophoresis ; 40(22): 3014-3022, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31560789

RESUMEN

Charge heterogeneity profiling is important for the quality control (QC) of biopharmaceuticals. Because of the increasing complexity of these therapeutic entities [1], the development of alternative analytical techniques is needed. In this work, flow-through partial-filling affinity capillary electrophoresis (FTPFACE) has been established as a method for the analysis of a mixture of two similar monoclonal antibodies (mAbs). The addition of a specific ligand results in the complexation of one mAb in the co-formulation, thus changing its migration time in the electric field. This allows the characterization of the charged variants of the non-shifted mAb without interferences. Adsorption of proteins to the inner capillary wall has been circumvented by rinsing with guanidine hydrochloride before each injection. The presented FTPFACE approach requires only very small amounts of ligands and provides complete comparability with a standard CZE of a single mAb.


Asunto(s)
Anticuerpos Monoclonales/análisis , Productos Biológicos/análisis , Electroforesis Capilar/métodos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación
4.
Electrophoresis ; 38(6): 769-785, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27982442

RESUMEN

During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required. Criticality of modifications may be specific for individual antibodies and has to be assessed for each molecule. However, some modifications of conserved structure elements occur in all or at least most IgGs. In these cases, criticality assessment may be applicable to related molecules or molecule formats. The relatively low dissociation energy of disulfide bonds and the high flexibility of the hinge region frequently lead to modifications and cleavages. Therefore, the hinge region and disulfide bonds require specific consideration during quality assessment of mAbs. In this review, available literature knowledge on underlying chemical reaction pathways of modifications, analytical methods for quantification and criticality are discussed. The hinge region is prone to cleavage and is involved in pathways that lead to thioether bond formation, cysteine racemization, and iso-Asp (Asp, aspartic acid) formation. Disulfide or sulfhydryl groups were found to be prone to reductive cleavage, trisulfide formation, cysteinylation, glutathionylation, disulfide bridging to further light chains, and disulfide scrambling. With regard to potency, disulfide cleavage, hinge cleavage, disulfide bridging to further light chains, and cysteinylation were found to influence antigen binding and fragment crystallizable (Fc) effector functionalities. Renal clearance of small fragments may be faster, whereas clearance of larger fragments appears to depend on their neonatal Fc receptor (FcRn) functionality, which in turn may be impeded by disulfide bond cleavage. Certain modifications such as disulfide induced aggregation and heterodimers from different antibodies are generally regarded critical with respect to safety. However, the detection of some modifications in endogenous antibodies isolated from human blood and the possibility of in vivo repair mechanisms may reduce some safety concerns.


Asunto(s)
Anticuerpos Monoclonales/química , Disulfuros/química , Inmunoglobulina G/inmunología , Humanos , Conformación Proteica
5.
Electrophoresis ; 38(24): 3136-3146, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28887890

RESUMEN

CZE is a well-established technique for charge heterogeneity testing of biopharmaceuticals. It is based on the differences between the ratios of net charge and hydrodynamic radius. In an extensive intercompany study, it was recently shown that CZE is very robust and can be easily implemented in labs that did not perform it before. However, individual characteristics of some examined proteins resulted in suboptimal resolution. Therefore, enhanced method development principles were applied here to investigate possibilities for further method optimization. For this purpose, a high number of different method parameters was evaluated with the aim to improve CZE separation. For the relevant parameters, design of experiments (DoE) models were generated and optimized in several ways for different sets of responses like resolution, peak width and number of peaks. In spite of product specific DoE optimization it was found that the resulting combination of optimized parameters did result in significant improvement of separation for 13 out of 16 different antibodies and other molecule formats. These results clearly demonstrate generic applicability of the optimized CZE method. Adaptation to individual molecular properties may sometimes still be required in order to achieve optimal separation but the set screws discussed in this study [mainly pH, identity of the polymer additive (HPC versus HPMC) and the concentrations of additives like acetonitrile, butanolamine and TETA] are expected to significantly reduce the effort for specific optimization.


Asunto(s)
Anticuerpos Monoclonales/análisis , Electroforesis Capilar/métodos , Electroforesis Capilar/normas , Proyectos de Investigación
6.
J Biol Chem ; 289(27): 18693-706, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24841203

RESUMEN

In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the "knob-into-hole" technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Receptores ErbB/inmunología , Inmunoglobulina G/inmunología , Ingeniería de Proteínas , Receptor IGF Tipo 1/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/metabolismo , Anticuerpos Biespecíficos/farmacología , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glicosilación , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Inmunoglobulina G/farmacología , Ratones , Neoplasias Pancreáticas/patología , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Anticuerpos de Cadena Única/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Proc Natl Acad Sci U S A ; 108(20): 8194-9, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21536919

RESUMEN

Bispecific antibodies that bind cell-surface targets as well as digoxigenin (Dig) were generated for targeted payload delivery. Targeting moieties are IgGs that bind the tumor antigens Her2, IGF1R, CD22, or LeY. A Dig-binding single-chain Fv was attached in disulfide-stabilized form to C termini of CH3 domains of targeting antibodies. Bispecific molecules were expressed in mammalian cells and purified in the same manner as unmodified IgGs. They are stable without aggregation propensity and retain binding specificity/affinity to cell-surface antigens and Dig. Digoxigeninylated payloads were generated that retain full functionality and can be complexed to bispecific antibodies in a defined 21 ratio. Payloads include small compounds (Dig-Cy5, Dig-Doxorubicin) and proteins (Dig-GFP). Complexed payloads are targeted by the bispecifics to cancer cells and because these complexes are stable in serum, they can be applied for targeted delivery. Because Dig bispecifics also effectively capture digoxigeninylated compounds under physiological conditions, separate administration of uncharged Dig bispecifics followed by application of Dig payload is sufficient to achieve antibody-mediated targeting in vitro and in vivo.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Antineoplásicos/administración & dosificación , Digoxigenina/inmunología , Sistemas de Liberación de Medicamentos/métodos , Anticuerpos Biespecíficos/inmunología , Antígenos de Neoplasias/inmunología , Carbocianinas/administración & dosificación , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Proteínas Fluorescentes Verdes/administración & dosificación , Humanos , Métodos , Anticuerpos de Cadena Única
8.
J Pharm Sci ; 113(8): 2394-2404, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38615817

RESUMEN

Innovative analytical instruments and development of new methods has provided a better understanding of protein particle formation in biopharmaceuticals but have also challenged the ability to obtain reproducible and reliable measurements. The need for protein-like particle standards mimicking the irregular shape, translucent nature and near-to-neutral buoyancy of protein particles remained one of the hot topics in the field of particle detection and characterization in biopharmaceutical formulations. An innovative protein-like particle model has been developed using two photo polymerization (2PP) printing allowing to fabricate irregularly shaped particles with similar properties as protein particles at precise size of 50 µm and 150 µm, representative of subvisible particles and visible particles, respectively. A study was conducted to compare the morphological, physical, and optical properties of artificially generated protein particles, polystyrene spheres, ETFE, and SU-8 particle standards, along with newly developed protein-like model particles manufactured using 2PP printing. Our results suggest that 2PP printing can be used to produce protein-like particle standards that might facilitate harmonization and standardization of subvisible and visible protein particle characterization across laboratories and organizations.


Asunto(s)
Tamaño de la Partícula , Impresión Tridimensional , Proteínas , Proteínas/química , Poliestirenos/química , Polimerizacion
9.
Eur J Pharm Biopharm ; 190: 242-247, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37524212

RESUMEN

Free fatty acid (FFA) particles that originate from the enzymatic hydrolysis of polysorbate (PS) via co-purified host cell proteins generally appear abruptly in drug products during real-time (long-term) storage. Efforts were taken to understand the kinetics of FFA particle formation, aiming for a mitigation strategy. However, it is rather challenging particularly in the sub-visible particle (SVP) range, due to either the insufficient sensitivity of the analytical techniques used or the interference of the formulation matrices of proteinaceous drug products. In this study, we examined the feasibility of Raman microscopy, backgrounded membrane imaging (BMI) and total holographic characterization (THC) on the detection of FFA sub-visible particles (SVPs). The results indicate that THC is the most sensitive technique to track their occurrence during the course of PS hydrolysis. Moreover, with this technique we are able to distinguish different stages of FFA particle formation in the medium. In addition, a real time stability study of a biopharmaceutical was analyzed, demonstrating the viability of THC to monitor SVPs in a real sample and correlate it to the visible particles (VPs) occurrence.


Asunto(s)
Productos Biológicos , Ácidos Grasos no Esterificados , Tamaño de la Partícula , Polisorbatos , Proteínas , Ácidos Grasos
10.
Arch Biochem Biophys ; 526(2): 206-18, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22464987

RESUMEN

In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/uso terapéutico , Receptores ErbB/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/uso terapéutico , Neoplasias/terapia , Receptor IGF Tipo 1/inmunología , Animales , Anticuerpos Biespecíficos/genética , Afinidad de Anticuerpos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clonación Molecular , Receptores ErbB/metabolismo , Femenino , Humanos , Inmunoglobulina G/genética , Inmunoterapia , Ratones , Ratones SCID , Modelos Moleculares , Neoplasias/inmunología , Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Ingeniería de Proteínas , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/uso terapéutico
11.
Artículo en Inglés | MEDLINE | ID: mdl-35026663

RESUMEN

Methionine is a common excipient used in therapeutic protein liquid formulations as stabilizer and antioxidant. The oxidation of methionine to methionine sulfoxide can be regarded as a sensitive marker of oxidative stress for drug product storage conditions. In this study, a sensitive HPLC method for the quantification of methionine sulfoxide in formulated protein product was developed and qualified according to regulatory requirements using a SIELC® Primesep 100 column with UV detection. The separation involves a mixed-mode mechanism including reversed phase and cationic exchange modalities. The operating range of the method was established between 1 µM and 35 µM of methionine sulfoxide. In this testing range, the method was shown to be linear (R2 > 0.99), accurate (Recovery 92.9 - 103.6%, average recovery = 99.8 ± 1.4%) and precise (intermediate precision at LoQ, CV = 2.9%). The developed test system was successfully applied to study the effects of temperature and storage conditions on methionine sulfoxide formation in complex therapeutic antibody formulations.


Asunto(s)
Excipientes/química , Metionina/análogos & derivados , Biomarcadores/análisis , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección , Modelos Lineales , Metionina/análisis , Metionina/química , Oxidación-Reducción , Reproducibilidad de los Resultados
12.
Antimicrob Agents Chemother ; 55(5): 2369-78, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21300827

RESUMEN

In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays. In contrast to monospecific CCR5 antibodies, bispecific antibody derivatives block two alternative docking sites of CCR5-tropic HIV strains on the CCR5 coreceptor. Consequently, these molecules showed 18- to 57-fold increased antiviral activities compared to the parent antibodies. Most importantly, one prototypic tetravalent CCR5 antibody had antiviral activity against virus strains resistant to the single parental antibodies. In summary, physical linkage of two CCR5 antibodies targeting different epitopes on the HIV coreceptor CCR5 resulted in tetravalent, bispecific antibodies with enhanced antiviral potency against wild-type and CCR5 antibody-resistant HIV-1 strains.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , VIH-1/efectos de los fármacos , Receptores CCR5/inmunología , Línea Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , VIH-1/inmunología , Humanos
13.
Bioanalysis ; 13(10): 829-840, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33890493

RESUMEN

Aim: Stabilization of critical reagents by freeze-drying would facilitate storage and transportation at ambient temperatures, and simultaneously enable constant reagent performance for long-term bioanalytical support throughout drug development. Freeze-drying as a generic process for stable performance and storage of critical reagents was investigated by establishing an universal formulation buffer and lyophilization process. Results: Using a storage-labile model protein, formulation buffers were evaluated to preserve reagent integrity during the freeze-drying process, and to retain functional performance after temperature stress. Application to critical reagents used in pharmacokinetics and anti-drug antibodies assays demonstrated stable functional performance of the reagents after 11 month at +40°C. Conclusion: Stabilization and storage of critical assay reagents by freeze-drying is an attractive alternative to traditional deep freezing.


Asunto(s)
Estabilidad de Medicamentos , Liofilización/métodos , Indicadores y Reactivos/química , Humanos
14.
Eur J Pharm Biopharm ; 112: 177-186, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27865934

RESUMEN

Following intravitreal (IVT) injection, therapeutic proteins get exposed to physiological pH, temperature and components in the vitreous humor (VH) for a significantly long time. Therefore, it is of interest to study the stability of the proteins in the VH. However, the challenge posed by the isolated VH (such as pH shift upon isolation and incubation due to the formation of smaller molecular weight (MW) degradation products) can result in artefacts when investigating protein stability in relevance for the actual in vivo situation. In this current study, an ex-vivo intravitreal horizontal stability model (ExVit-HS) has been successfully developed and an assessment of long-term stability of a bi-specific monoclonal antibody (mAb) drug in the isolated VH for 3months at physiological conditions has been conducted. The stability assessment was performed using various analytical techniques such as microscopy, UV visible for protein content, target binding ELISA, Differential Scanning Calorimetry (DSC), Capillary-electrophoresis-SDS, Size Exclusion (SEC) and Ion-exchange chromatography (IEC) and SPR-Biacore. The results show that the ExVit-HS model was successful in maintaining the VH at physiological conditions and retained a majority of protein in the VH-compartment throughout the study period. The mAb exhibited significantly less fragmentation in the VH relative to the PBS control; however, chemical stability of the mAb was equally compromised in VH and PBS. Interestingly, in the PBS control, mAb showed a rapid linear loss in the binding affinity. The loss in binding was almost 20% higher compared to that in VH after 3months. The results clearly suggest that the mAb has different degradation kinetics in the VH compared to PBS. These results suggest that it is beneficial to investigate the stability in the VH for drugs intended for IVT injection and that are expected longer residence times in the VH. The studies show that the ExVit-HS model may become a valuable tool for evaluating stability of protein drugs and other molecules following IVT injection.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Ojo/metabolismo , Animales , Anticuerpos Monoclonales/química , Rastreo Diferencial de Calorimetría , Cromatografía Liquida , Estabilidad de Medicamentos , Técnicas In Vitro , Resonancia por Plasmón de Superficie , Porcinos
15.
MAbs ; 8(8): 1525-1535, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27612038

RESUMEN

Therapeutic antibodies can undergo a variety of chemical modification reactions in vitro. Depending on the site of modification, either antigen binding or Fc-mediated functions can be affected. Oxidation of tryptophan residues is one of the post-translational modifications leading to altered antibody functionality. In this study, we examined the structural and functional properties of a therapeutic antibody construct and 2 affinity matured variants thereof. Two of the 3 antibodies carry an oxidation-prone tryptophan residue in the complementarity-determining region of the VL domain. We demonstrate the differences in the stability and bioactivity of the 3 antibodies, and reveal differential degradation pathways for the antibodies susceptible to oxidation.


Asunto(s)
Anticuerpos Monoclonales/química , Regiones Determinantes de Complementariedad/química , Procesamiento Proteico-Postraduccional/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos/inmunología , Regiones Determinantes de Complementariedad/inmunología , Humanos , Oxidación-Reducción , Estabilidad Proteica
16.
MAbs ; 8(5): 928-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27031922

RESUMEN

The formation of undesired high molecular weight species such as dimers is an important quality attribute for therapeutic monoclonal antibody formulations. Therefore, the thorough understanding of mAb dimerization and the detailed characterization mAb dimers is of great interest for future pharmaceutical development of therapeutic antibodies. In this work, we focused on the analyses of different mAb dimers regarding size, surface properties, chemical identity, overall structure and localization of possible dimerization sites. Dimer fractions of different mAbs were isolated to a satisfactory purity from bulk material and revealed 2 predominant overall structures, namely elongated and compact dimer forms. The elongated dimers displayed one dimerization site involving the tip of the Fab domain. Depending on the stress applied, these elongated dimers are connected either covalently or non-covalently. In contrast, the compact dimers exhibited non-covalent association. Several interaction points were detected for the compact dimers involving the hinge region or the base of the Fab domain. These results indicate that mAb dimer fractions are rather complex and may contain more than one kind of dimer. Nevertheless, the overall appearance of mAb dimers suggests the existence of 2 predominant dimeric structures, elongated and compact, which are commonly present in preparations of therapeutic mAbs.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoglobulina G/química , Dimerización , Humanos
17.
Mol Oncol ; 10(8): 1317-29, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27507537

RESUMEN

Mesothelin overexpression in lung adenocarcinomas correlates with the presence of activating KRAS mutations and poor prognosis. Hence SS1P, a mesothelin-targeted immunotoxin, could offer valuable treatment options for these patients, but its use in solid tumor therapy is hampered by high immunogenicity and non-specific toxicity. To overcome both obstacles we developed RG7787, a de-immunized cytotoxic fusion protein comprising a humanized SS1 Fab fragment and a truncated, B-cell epitope silenced, 24 kD fragment of Pseudomonas exotoxin A (PE24). Reactivity of RG7787 with sera from immunotoxin-treated patients was >1000 fold reduced. In vitro RG7787 inhibited cell viability of lung cancer cell lines with picomolar potency. The pharmacokinetic properties of RG7787 in rodents were comparable to SS1P, yet it was tolerated up to 10 fold better without causing severe vascular leak syndrome or hepatotoxicity. A pharmacokinetic/pharmacodynamic model developed based on NCI-H596 xenograft studies showed that for RG7787 and SS1P, their in vitro and in vivo potencies closely correlate. At optimal doses of 2-3 mg/kg RG7787 is more efficacious than SS1P. Even large, well established tumors (600 mm(3)) underwent remission during three treatment cycles with RG7787. Also in two patient-derived lung cancer xenograft models, Lu7336 and Lu7187, RG7787 showed anti-tumor efficacy. In monotherapy two treatment cycles were moderately efficacious in the Lu7336 model but showed good anti-tumor activity in the KRAS mutant Lu7187 model (26% and 80% tumor growth inhibition, respectively). Combination of RG7787 with standard chemotherapies further enhanced efficacy in both models achieving near complete eradication of Lu7187 tumors.


Asunto(s)
ADP Ribosa Transferasas/uso terapéutico , Toxinas Bacterianas/uso terapéutico , Exotoxinas/uso terapéutico , Proteínas Ligadas a GPI/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Ingeniería de Proteínas , Pseudomonas/metabolismo , Proteínas Recombinantes de Fusión/uso terapéutico , Factores de Virulencia/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Pulmonares/patología , Mesotelina , Ratones SCID , Modelos Biológicos , Ratas , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Exotoxina A de Pseudomonas aeruginosa
18.
Eur J Pharm Biopharm ; 95(Pt B): 407-17, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26032291

RESUMEN

The stability of protein therapeutics during the residence time in the vitreous humor (VH) is an important consideration for intra ocular treatment and can possibly impact therapeutic efficacy and/or treatment intervals. Unavailability of the reliable Ex-vivo intravitreal (ExVit) model to estimate protein stability following IVT has driven the research focus to develop such model which can facilitate protein stability estimation before in-vivo experiments. In this manuscript, we have developed and evaluated three ExVit models, namely, ExVit static, semi-dynamic and dynamic. These models were utilized and compared when studying the in-vitro stability of model protein formulations under simulated intraocular conditions using porcine vitreous humor (VH). The ExVit static model exhibited significant precipitation and aggregation of proteins, most likely due to pH change occurred in the VH after isolation. The semi-dynamic model assessed was composed of two compartments i.e., VH- and buffer-compartment which has effectively stabilized the pH of the VH and facilitated the migration of VH degradation products. However, some limitations related to investigation of long-term protein stability were also observed with semi-dynamic model. The dynamic model developed, was comprised of three diffusion controlling barriers (two diffusion controlling membranes and a gel-matrix), which allowed modulation of the diffusion rate of macromolecules. The ability of dynamic model to modulate protein retention time in the VH will overcome the challenges faced by the semi-dynamic model such as long-term stability evaluation.


Asunto(s)
Modelos Biológicos , Proteínas/metabolismo , Cuerpo Vítreo/metabolismo , Animales , Precipitación Química , Difusión , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Estabilidad Proteica , Proteínas/administración & dosificación , Porcinos , Factores de Tiempo
19.
Neuron ; 81(1): 49-60, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24411731

RESUMEN

Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aß antibody, which uses a monovalent binding mode to the TfR, increases ß-Amyloid target engagement in a mouse model of Alzheimer's disease by 55-fold compared to the parent antibody. We provide in vitro and in vivo evidence that the monovalent binding mode facilitates transcellular transport, whereas a bivalent binding mode leads to lysosome sorting. Enhanced target engagement of the Brain Shuttle module translates into a significant improvement in amyloid reduction. These findings have major implications for the development of biologics-based treatment of brain disorders.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Transporte de Proteínas/fisiología , Anticuerpos de Cadena Única/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/inmunología , Precursor de Proteína beta-Amiloide/genética , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Línea Celular Transformada , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Macrólidos/farmacología , Ratones , Ratones Transgénicos , Modelos Inmunológicos , Presenilina-1/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/inmunología , Transporte de Proteínas/efectos de los fármacos , Receptores de Transferrina/inmunología , Receptores de Transferrina/metabolismo , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/uso terapéutico , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Transcitosis/efectos de los fármacos , Transcitosis/genética , Transcitosis/inmunología
20.
MAbs ; 6(5): 1229-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25517308

RESUMEN

Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established. A novel pH-gradient FcRn affinity chromatography method was applied to isolate three antibody oxidation variants from an oxidized IgG1 preparation based on their FcRn binding properties. Physico-chemical characterization revealed that the three oxidation variants differed predominantly in the number of oxMet252 per IgG (0, 1, or 2), but not significantly in the content of oxMet428. Corresponding to the increase in oxMet252 content, stepwise reduction of FcRn affinity in vitro, as well as faster clearance and shorter terminal half-life, in huFcRn-transgenic mice were observed. A single Met252 oxidation per antibody had no significant effect on pharmacokinetics (PK) compared with unmodified IgG. Importantly, only molecules with both heavy chains oxidized at Met252 exhibited significantly faster clearance. In contrast, Met428 oxidation had no apparent negative effect on PK and even led to somewhat improved FcRn binding and slower clearance. This minor effect, however, seemed to be abrogated by the dominant effect of Met252 oxidation. The novel approach of functional chromatographic separation of IgG oxidation variants followed by physico-chemical and biological characterization has yielded the first experimentally-backed explanation for the unaltered PK properties of antibody preparations containing relatively high Met252 and Met428 oxidation levels.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacocinética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Metionina/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Afinidad de Anticuerpos , Cromatografía de Afinidad , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Fragmentos Fc de Inmunoglobulinas/sangre , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Tasa de Depuración Metabólica , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción/efectos de los fármacos , Unión Proteica , Receptores Fc/genética , Receptores Fc/metabolismo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA