Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
EMBO J ; 41(5): e109800, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037270

RESUMEN

All living organisms adapt their membrane lipid composition in response to changes in their environment or diet. These conserved membrane-adaptive processes have been studied extensively. However, key concepts of membrane biology linked to regulation of lipid composition including homeoviscous adaptation maintaining stable levels of membrane fluidity, and gel-fluid phase separation resulting in domain formation, heavily rely upon in vitro studies with model membranes or lipid extracts. Using the bacterial model organisms Escherichia coli and Bacillus subtilis, we now show that inadequate in vivo membrane fluidity interferes with essential complex cellular processes including cytokinesis, envelope expansion, chromosome replication/segregation and maintenance of membrane potential. Furthermore, we demonstrate that very low membrane fluidity is indeed capable of triggering large-scale lipid phase separation and protein segregation in intact, protein-crowded membranes of living cells; a process that coincides with the minimal level of fluidity capable of supporting growth. Importantly, the in vivo lipid phase separation is not associated with a breakdown of the membrane diffusion barrier function, thus explaining why the phase separation process induced by low fluidity is biologically reversible.


Asunto(s)
Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Fluidez de la Membrana/fisiología , Lípidos de la Membrana/metabolismo , Proteínas/metabolismo , Bacillus subtilis/fisiología , Membrana Celular/metabolismo , Membrana Celular/fisiología , Escherichia coli/fisiología
2.
PLoS Genet ; 19(6): e1010784, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276233

RESUMEN

Competitive bacteria-bacteriophage interactions have resulted in the evolution of a plethora of bacterial defense systems preventing phage propagation. In recent years, computational and bioinformatic approaches have underpinned the discovery of numerous novel bacterial defense systems. Anti-phage systems are frequently encoded together in genomic loci termed defense islands. Here we report the identification and characterisation of a novel anti-phage system, that we have termed Shield, which forms part of the Pseudomonas defensive arsenal. The Shield system comprises the core component ShdA, a membrane-bound protein harboring an RmuC domain. Heterologous production of ShdA alone is sufficient to mediate bacterial immunity against several phages. We demonstrate that Shield and ShdA confer population-level immunity and that they can also decrease transformation efficiency. We further show that ShdA homologues can degrade DNA in vitro and, when expressed in a heterologous host, can alter the organisation of the host chromosomal DNA. Use of comparative genomic approaches identified how Shield can be divided into four subtypes, three of which contain additional components that in some cases can negatively affect the activity of ShdA and/or provide additional lines of phage defense. Collectively, our results identify a new player within the Pseudomonas bacterial immunity arsenal that displays a novel mechanism of protection, and reveals a role for RmuC domains in phage defense.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Pseudomonas/genética , Bacterias/genética , Genoma
3.
Proc Natl Acad Sci U S A ; 120(33): e2305393120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37556498

RESUMEN

Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Antitoxinas/genética , Toxinas Bacterianas/metabolismo , Células Procariotas/metabolismo , Operón/genética , Biología Computacional , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121656

RESUMEN

Toxin-antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain.


Asunto(s)
Antitoxinas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Dominios Proteicos/genética , Sistemas Toxina-Antitoxina/genética , Proteínas Bacterianas/genética , Burkholderia/genética , Regulación Bacteriana de la Expresión Génica/genética , Guanosina Pentafosfato/genética , Operón/genética , Profagos/genética
5.
Proc Natl Acad Sci U S A ; 117(34): 20836-20847, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32769205

RESUMEN

The type VII protein secretion system (T7SS) is conserved across Staphylococcus aureus strains and plays important roles in virulence and interbacterial competition. To date, only one T7SS substrate protein, encoded in a subset of S. aureus genomes, has been functionally characterized. Here, using an unbiased proteomic approach, we identify TspA as a further T7SS substrate. TspA is encoded distantly from the T7SS gene cluster and is found across all S. aureus strains as well as in Listeria and Enterococci. Heterologous expression of TspA from S. aureus strain RN6390 indicates its C-terminal domain is toxic when targeted to the Escherichia coli periplasm and that it depolarizes the cytoplasmic membrane. The membrane-depolarizing activity is alleviated by coproduction of the membrane-bound TsaI immunity protein, which is encoded adjacent to tspA on the S. aureus chromosome. Using a zebrafish hindbrain ventricle infection model, we demonstrate that the T7SS of strain RN6390 promotes bacterial replication in vivo, and deletion of tspA leads to increased bacterial clearance. The toxin domain of TspA is highly polymorphic and S. aureus strains encode multiple tsaI homologs at the tspA locus, suggestive of additional roles in intraspecies competition. In agreement, we demonstrate TspA-dependent growth inhibition of RN6390 by strain COL in the zebrafish infection model that is alleviated by the presence of TsaI homologs.


Asunto(s)
Staphylococcus aureus/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Animales , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Proteínas de la Membrana/metabolismo , Familia de Multigenes/genética , Transporte de Proteínas/genética , Proteómica , Infecciones Estafilocócicas/microbiología , Toxinas Biológicas/metabolismo , Sistemas de Secreción Tipo VII/fisiología , Virulencia/genética , Pez Cebra/microbiología
6.
Proc Natl Acad Sci U S A ; 117(19): 10500-10510, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32345719

RESUMEN

Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.


Asunto(s)
Bacterias/crecimiento & desarrollo , Guanosina Pentafosfato/metabolismo , Sistemas Toxina-Antitoxina/fisiología , Nucleótidos de Adenina/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Bases de Datos Genéticas , Regulación Bacteriana de la Expresión Génica/genética , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo , Ligasas/metabolismo , Pirofosfatasas/metabolismo , Transducción de Señal , Estrés Fisiológico/fisiología
7.
Microbiology (Reading) ; 168(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36301085

RESUMEN

Replication and segregation of the genetic information is necessary for a cell to proliferate. In Bacillus subtilis, the Par system (ParA/Soj, ParB/Spo0J and parS) is required for segregation of the chromosome origin (oriC) region and for proper control of DNA replication initiation. ParB binds parS sites clustered near the origin of replication and assembles into sliding clamps that interact with ParA to drive origin segregation through a diffusion-ratchet mechanism. As part of this dynamic process, ParB stimulates ParA ATPase activity to trigger its switch from an ATP-bound dimer to an ADP-bound monomer. In addition to its conserved role in DNA segregation, ParA is also a regulator of the master DNA replication initiation protein DnaA. We hypothesized that in B. subtilis the location of the Par system proximal to oriC would be necessary for ParA to properly regulate DnaA. To test this model, we constructed a range of genetically modified strains with altered numbers and locations of parS sites, many of which perturbed chromosome origin segregation as expected. Contrary to our hypothesis, the results show that regulation of DNA replication initiation by ParA is maintained when a parS site is separated from oriC. Because a single parS site is sufficient for proper control of ParA, the results are consistent with a model where ParA is efficiently regulated by ParB sliding clamps following loading at parS.


Asunto(s)
Bacillus subtilis , Cromosomas Bacterianos , Bacillus subtilis/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN/genética , Segregación Cromosómica , Origen de Réplica/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
8.
Microbiology (Reading) ; 168(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36165741

RESUMEN

Transmembrane potential is one of the main bioenergetic parameters of bacterial cells, and is directly involved in energizing key cellular processes such as transport, ATP synthesis and motility. The most common approach to measure membrane potential levels is through use of voltage-sensitive fluorescent dyes. Such dyes either accumulate or are excluded from the cell in a voltage-dependent manner, which can be followed by means of fluorescence microscopy, flow cytometry, or fluorometry. Since the cell's ability to maintain transmembrane potential relies upon low and selective membrane ion conductivity, voltage-sensitive dyes are also highly sensitive reporters for the activity of membrane-targeting antibacterials. However, the presence of an additional membrane layer in Gram-negative (diderm) bacteria complicates their use significantly. In this paper, we provide guidance on how membrane potential and its changes can be monitored reliably in Gram-negatives using the voltage-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide [DiSC3(5)]. We also discuss the confounding effects caused by the presence of the outer membrane, or by measurements performed in buffers rather than growth medium. We hope that the discussed methods and protocols provide an easily accessible basis for the use of voltage-sensitive dyes in Gram-negative organisms, and raise awareness of potential experimental pitfalls associated with their use.


Asunto(s)
Colorantes Fluorescentes , Yoduros , Adenosina Trifosfato/metabolismo , Colorantes Fluorescentes/metabolismo , Bacterias Gramnegativas/metabolismo , Yoduros/metabolismo , Potenciales de la Membrana
9.
Appl Environ Microbiol ; 88(10): e0018022, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35481757

RESUMEN

The antimicrobial killing mechanism of octenidine (OCT), a well-known antiseptic is poorly understood. We recently reported its interaction with Gram-negative bacteria by insertion of OCT into the outer and cytoplasmic membrane of Escherichia coli, resulting in a chaotic lipid rearrangement and rapid disruption of the cell envelope. Its action primarily disturbs the packing order of the hydrophobic moiety of a lipid, which consequently might result in a cascade of multiple effects at a cellular level. Here, we investigated OCT's impact on two different Gram-positive bacteria, Enterococcus hirae and Bacillus subtilis, and their respective model membranes. In accordance with our previous results, OCT induced membrane disorder in all investigated model systems. Electron and fluorescence microscopy clearly demonstrated changes in cellular structure and membrane integrity. These changes were accompanied by neutralization of the surface charge in both E. hirae and B. subtilis and membrane disturbances associated with permeabilization. Similar permeabilization and disordering of the lipid bilayer was also observed in model membranes. Furthermore, experiments performed on strongly versus partly anionic membranes showed that the lipid disordering effect induced by OCT is a result of maximized hydrophobic over electrostatic forces without distinct neutralization of the surface charge or discrimination between the lipid head groups. Indeed, mutants lacking specific lipid head groups were also susceptible to OCT to a similar extent as the wild type. The observed unspecific mode of action of OCT underlines its broad antimicrobial profile and renders the development of bacterial resistance to this molecule less likely. IMPORTANCE OCT is a well-established antiseptic molecule routinely used in a large field of clinical applications. Since the spread of antimicrobial resistance has restricted the use of antibiotics worldwide, topically applied antiseptics like OCT, with a broad spectrum of antimicrobial activity and high safety profile, gain increasing importance for effective infection prevention and therapy. To eliminate a wide spectrum of disease-causing microorganisms, a compound's antiseptic activity should be unspecific or multitarget. Our results demonstrate an unspecific mechanism of action for OCT, which remained largely unknown for years. OCT disturbs the barrier function of a bacterial cell, a function that is absolutely fundamental for survival. Because OCT does not distinguish between lipids, the building blocks of bacterial membranes, its mode of action might be attributed to all bacteria, including (multi)drug-resistant isolates. Our results underpin OCT's potent antiseptic activity for successful patient outcome.


Asunto(s)
Antiinfecciosos Locales , Antibacterianos/metabolismo , Antiinfecciosos Locales/farmacología , Bacillus subtilis , Membrana Celular/metabolismo , Escherichia coli , Bacterias Grampositivas , Humanos , Iminas , Lípidos/farmacología , Pruebas de Sensibilidad Microbiana , Piridinas
10.
Annu Rev Microbiol ; 71: 519-538, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28697671

RESUMEN

The bacterial cytoplasmic membrane is composed of roughly equal proportions of lipids and proteins. The main lipid components are phospholipids, which vary in acyl chain length, saturation, and branching and carry head groups that vary in size and charge. Phospholipid variants determine membrane properties such as fluidity and charge that in turn modulate interactions with membrane-associated proteins. We summarize recent advances in understanding bacterial membrane structure and function, focusing particularly on the possible existence and significance of specialized membrane domains. We review the role of membrane curvature as a spatial cue for recruitment and regulation of proteins involved in morphogenic functions, especially elongation and division. Finally, we examine the role of the membrane, especially regulation of synthesis and fluid properties, in the life cycle of cell wall-deficient L-form bacteria.


Asunto(s)
Bacterias/citología , Membrana Celular/fisiología , Bacterias/química , Membrana Celular/química , Membrana Celular/ultraestructura , Fluidez de la Membrana , Proteínas de la Membrana/análisis , Fosfolípidos/análisis
11.
Proc Natl Acad Sci U S A ; 113(45): E7077-E7086, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791134

RESUMEN

Daptomycin is a highly efficient last-resort antibiotic that targets the bacterial cell membrane. Despite its clinical importance, the exact mechanism by which daptomycin kills bacteria is not fully understood. Different experiments have led to different models, including (i) blockage of cell wall synthesis, (ii) membrane pore formation, and (iii) the generation of altered membrane curvature leading to aberrant recruitment of proteins. To determine which model is correct, we carried out a comprehensive mode-of-action study using the model organism Bacillus subtilis and different assays, including proteomics, ionomics, and fluorescence light microscopy. We found that daptomycin causes a gradual decrease in membrane potential but does not form discrete membrane pores. Although we found no evidence for altered membrane curvature, we confirmed that daptomycin inhibits cell wall synthesis. Interestingly, using different fluorescent lipid probes, we showed that binding of daptomycin led to a drastic rearrangement of fluid lipid domains, affecting overall membrane fluidity. Importantly, these changes resulted in the rapid detachment of the membrane-associated lipid II synthase MurG and the phospholipid synthase PlsX. Both proteins preferentially colocalize with fluid membrane microdomains. Delocalization of these proteins presumably is a key reason why daptomycin blocks cell wall synthesis. Finally, clustering of fluid lipids by daptomycin likely causes hydrophobic mismatches between fluid and more rigid membrane areas. This mismatch can facilitate proton leakage and may explain the gradual membrane depolarization observed with daptomycin. Targeting of fluid lipid domains has not been described before for antibiotics and adds another dimension to our understanding of membrane-active antibiotics.

12.
J Bacteriol ; 200(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29463603

RESUMEN

Chemoreceptors are localized at the cell poles of Escherichia coli and other rod-shaped bacteria. Over the years, different mechanisms have been put forward to explain this polar localization, including stochastic clustering, membrane curvature-driven localization, interactions with the Tol-Pal complex, and nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at the cell poles. Interestingly, Tar still accumulated at midcell in tol and in pal deletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterized by strong membrane curvature. Chemoreceptors, like Tar, form trimers of dimers that bend the cell membrane due to a rigid tripod structure. The curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favorable, as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or the cell poles. These findings favor a model where chemoreceptor localization in E. coli is driven by strong membrane curvature and association with the Tol-Pal complex.IMPORTANCE Bacteria have exquisite mechanisms to sense and adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar in E. coli and found that membrane curvature at cell division sites and the Tol-Pal protein complex localize Tar at cell division sites, the future cell poles. This study shows how membrane curvature can guide localization of proteins in a cell.


Asunto(s)
Membrana Celular/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Receptores de Superficie Celular/metabolismo , Proteínas de Escherichia coli/genética , Mutación , Transporte de Proteínas , Receptores de Superficie Celular/genética
13.
Microbiology (Reading) ; 164(4): 475-482, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29504925

RESUMEN

Rather than being homogenous diffusion-dominated structures, biological membranes can exhibit areas with distinct composition and characteristics, commonly termed as lipid domains. Arguably the most comprehensively studied examples in bacteria are domains formed by cardiolipin, which have been functionally linked to protein targeting, the cell division process and the mode of action of membrane-targeting antimicrobials. Cardiolipin domains were originally identified in the Gram-negative model organism Escherichia coli based on preferential staining by the fluorescent membrane dye nonylacridine orange (NAO), and later reported to also exist in other Gram-negative and -positive bacteria. Recently, the lipid-specificity of NAO has been questioned based on studies conducted in E. coli. This prompted us to reanalyse cardiolipin domains in the Gram-positive model organism Bacillus subtilis. Here we show that logarithmically growing B. subtilis does not form microscopically detectable cardiolipin-specific lipid domains, and that NAO is not a specific stain for cardiolipin in this organism.


Asunto(s)
Bacillus subtilis/citología , Cardiolipinas/análisis , Membrana Celular/química , Naranja de Acridina/análogos & derivados , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Cromatografía en Capa Delgada , Medios de Cultivo , Colorantes Fluorescentes , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mutación , Coloración y Etiquetado , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
14.
PLoS Genet ; 11(2): e1004961, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25647427

RESUMEN

RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-like structures as reported earlier by Taghbalout and Rothfield. We show that association of RhlB with the membrane depends on a direct protein interaction with RNase E, which is anchored to the inner cytoplasmic membrane through an MTS (Membrane Targeting Sequence). Molecular dynamics simulations show that the MTS interacts with the phospholipid bilayer by forming a stabilized amphipathic α-helix with the helical axis oriented parallel to the plane of the bilayer and hydrophobic side chains buried deep in the acyl core of the membrane. Based on the molecular dynamics simulations, we propose that the MTS freely diffuses in the membrane by a novel mechanism in which a large number of weak contacts are rapidly broken and reformed. TIRFm (Total Internal Reflection microscopy) shows that RNase E in live cells rapidly diffuses over the entire inner membrane forming short-lived foci. Diffusion could be part of a scanning mechanism facilitating substrate recognition and cooperativity. Remarkably, RNase E foci disappear and the rate of RNase E diffusion increases with rifampicin treatment. Control experiments show that the effect of rifampicin is specific to RNase E and that the effect is not a secondary consequence of the shut off of E. coli transcription. We therefore interpret the effect of rifampicin as being due to the depletion of RNA substrates for degradation. We propose a model in which formation of foci and constraints on diffusion arise from the transient clustering of RNase E into cooperative degradation bodies.


Asunto(s)
ARN Helicasas DEAD-box/genética , Endorribonucleasas/genética , Proteínas de Escherichia coli/genética , Complejos Multienzimáticos/genética , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/genética , Estabilidad del ARN/genética , Estructuras de la Membrana Celular/química , Estructuras de la Membrana Celular/genética , ARN Helicasas DEAD-box/química , Endorribonucleasas/química , Escherichia coli/genética , Simulación de Dinámica Molecular , Complejos Multienzimáticos/química , Conformación de Ácido Nucleico , Fosfolípidos/química , Fosfolípidos/genética , Polirribonucleótido Nucleotidiltransferasa/química , Mapas de Interacción de Proteínas/genética , ARN Helicasas/química , ARN Mensajero/genética
15.
Mol Microbiol ; 98(4): 651-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26234942

RESUMEN

Toxin-antitoxin loci, which encode a toxic protein alongside with either RNA or a protein able to counteract the toxicity, are widespread among archaea and bacteria. These loci are implicated in persistence, and as addiction modules to ensure stable inheritance of plasmids and phages. In type I toxin-antitoxin systems, a small RNA acts as an antitoxin, which prevents the synthesis of the toxin. Most type I toxins are small hydrophobic membrane proteins generally assumed to induce pores, or otherwise permeabilise the cytoplasmic membrane and, as a result, induce cell death by energy starvation. Here we show that this mode of action is not a conserved property of type I toxins. The analysis of the cellular toxicity caused by Bacillus subtilis prophage SPß-encoded toxin BsrG revealed that, surprisingly, it neither dissipates membrane potential nor affects cellular ATP-levels. In contrast, BsrG strongly interferes with the cell envelope biosynthesis, causes membrane invaginations together with delocalisation of the cell wall synthesis machinery and triggers autolysis. Furthermore, efficient inhibition of protein biosynthesis is observed. These findings question the simplistic assumption that small membrane targeting toxins generally act by permeabilising the membrane.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Toxinas Bacterianas/metabolismo , Fagos de Bacillus/genética , Bacillus subtilis/citología , Bacillus subtilis/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular , Pared Celular/metabolismo , Pared Celular/ultraestructura , Regulación Bacteriana de la Expresión Génica , Profagos/genética , Biosíntesis de Proteínas
16.
Proc Natl Acad Sci U S A ; 110(48): E4601-10, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218584

RESUMEN

A key step in bacterial cell division is the polymerization of the tubulin homolog FtsZ at midcell. FtsZ polymers are anchored to the cell membrane by FtsA and are required for the assembly of all other cell division proteins. In Gram-positive and cyanobacteria, FtsZ filaments are aligned by the protein SepF, which in vitro polymerizes into large rings that bundle FtsZ filaments. Here we describe the crystal structure of the only globular domain of SepF, located within the C-terminal region. Two-hybrid data revealed that this domain comprises the FtsZ binding site, and EM analyses showed that it is sufficient for ring formation, which is explained by the filaments in the crystals of SepF. Site-directed mutagenesis, gel filtration, and analytical ultracentrifugation indicated that dimers form the basic units of SepF filaments. High-resolution structured illumination microscopy suggested that SepF is membrane associated, and it turned out that purified SepF not only binds to lipid membranes, but also recruits FtsZ. Further genetic and biochemical analyses showed that an amphipathic helix at the N terminus functions as the membrane-binding domain, making SepF a unique membrane anchor for the FtsZ ring. This clarifies why Bacillus subtilis grows without FtsA or the putative membrane anchor EzrA and why bacteria lacking FtsA contain SepF homologs. Both FtsA and SepF use an amphipathic helix for membrane binding. These helices prefer positively curved membranes due to relaxed lipid density; therefore this type of membrane anchor may assist in keeping the Z ring positioned at the strongly curved leading edge of the developing septum.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/química , Modelos Moleculares , Conformación Proteica , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Cromatografía en Gel , Dicroismo Circular , Clonación Molecular , Cristalografía , Proteínas del Citoesqueleto/metabolismo , Cartilla de ADN/genética , Dimerización , Escherichia coli , Prueba de Complementación Genética , Microscopía Electrónica , Microscopía Fluorescente , Mutagénesis , Plásmidos/genética , Polimerizacion , Técnicas del Sistema de Dos Híbridos , Levaduras
17.
mBio ; : e0151224, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037275

RESUMEN

Staphylococcus aureus produces a plethora of virulence factors critical to its ability to establish an infection and cause disease. We have previously characterized a small membrane protein, MspA, which has pleiotropic effects on virulence and contributes to S. aureus pathogenicity in vivo. Here we report that mspA inactivation triggers overaccumulation of the essential cell wall component, lipoteichoic acid (LTA), which, in turn, decreases autolytic activity and leads to increased cell size due to a delay in cell separation. We show that MspA directly interacts with the enzymes involved in LTA biosynthesis (LtaA, LtaS, UgtP, and SpsB), interfering with their normal activities. MspA, in particular, interacts with the type I signal peptidase SpsB, limiting its cleavage of LtaS into its active form. These findings suggest that MspA contributes to maintaining a physiological level of LTA in the cell wall by interacting with and inhibiting the activity of SpsB, thereby uncovering a critical role for the MspA protein in regulating cell envelope biosynthesis and pathogenicity.IMPORTANCEThe S. aureus cell envelope, comprising the cytoplasmic membrane, a thick peptidoglycan layer, and the anionic polymers lipoteichoic acid and wall teichoic acids, is fundamental for bacterial growth and division, as well as being the main interface between the pathogen and the host. It has become increasingly apparent that the synthesis and turnover of cell envelope components also affect the virulence of S. aureus. In this study, we show that MspA, an effector of S. aureus virulence, contributes to the maintenance of normal levels of lipoteichoic acid in the cell wall, with implications on cell cycle and size. These findings further our understanding of the connections between envelope synthesis and pathogenicity and suggest that MspA represents a promising target for the development of future therapeutic strategies.

18.
Nat Commun ; 15(1): 5411, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926336

RESUMEN

Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. We found that the B. subtilis elongasome is highly processive and that processive synthesis events are frequently terminated by rapid reversal or extended pauses. We found that cellular levels of RodA regulate elongasome processivity, reversal and pausing. Our single-molecule data, together with stochastic simulations, show that elongasome dynamics and processivity are regulated by molecular motor tug-of-war competition between several, likely two, oppositely oriented peptidoglycan synthesis complexes associated with the MreB filament. Altogether these results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Pared Celular , Proteínas de Unión a las Penicilinas , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Pared Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/metabolismo , Peptidoglicano/biosíntesis , Microscopía Fluorescente , Imagen Individual de Molécula , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/genética
19.
Cell Host Microbe ; 32(7): 1059-1073.e8, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38821063

RESUMEN

Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Chaperonas Moleculares , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Bacteriófago lambda/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/fisiología , Antitoxinas/metabolismo , Antitoxinas/genética , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/genética
20.
J Bacteriol ; 195(18): 4074-84, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836871

RESUMEN

Escherichia coli F(O)F(1) ATP synthase, a rotary nanomachine, is composed of eight different subunits in a α3ß3γδεab2c10 stoichiometry. Whereas F(O)F(1) has been studied in detail with regard to its structure and function, much less is known about how this multisubunit enzyme complex is assembled. Single-subunit atp deletion mutants are known to be arrested in assembly, thus leading to formation of partially assembled subcomplexes. To determine whether those subcomplexes are preserved in a stable standby mode, a time-delayed in vivo assembly system was developed. To establish this approach, we targeted the time-delayed assembly of membrane-integrated subunit a into preformed F(O)F(1) lacking subunit a (F(O)F(1)-a) which is known to form stable subcomplexes in vitro. Two expression systems (araBADp and T7p-laco) were adjusted to provide compatible, mutually independent, and sufficiently stringent induction and repression regimens. In detail, all structural atp genes except atpB (encoding subunit a) were expressed under the control of araBADp and induced by arabinose. Following synthesis of F(O)F(1)-a during growth, expression was repressed by glucose/d-fucose, and degradation of atp mRNA controlled by real-time reverse transcription-PCR. A time-delayed expression of atpB under T7p-laco control was subsequently induced in trans by addition of isopropyl-ß-d-thiogalactopyranoside. Formation of fully assembled, and functional, F(O)F(1) complexes was verified. This demonstrates that all subunits of F(O)F(1)-a remain in a stable preformed state capable to integrate subunit a as the last subunit. The results reveal that the approach presented here can be applied as a general method to study the assembly of heteromultimeric protein complexes in vivo.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Subunidades de Proteína/metabolismo , Adenosina Trifosfato/metabolismo , Técnicas Bacteriológicas/métodos , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación , Subunidades de Proteína/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA