Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38684365

RESUMEN

Superagers are elderly individuals with the memory ability of people 30 years younger and provide evidence that age-related cognitive decline is not inevitable. In a sample of 64 superagers (mean age, 81.9; 59% women) and 55 typical older adults (mean age, 82.4; 64% women) from the Vallecas Project, we studied, cross-sectionally and longitudinally over 5 years with yearly follow-ups, the global cerebral white matter status as well as region-specific white matter microstructure assessment derived from diffusivity measures. Superagers and typical older adults showed no difference in global white matter health (total white matter volume, Fazekas score, and lesions volume) cross-sectionally or longitudinally. However, analyses of diffusion parameters revealed the better white matter microstructure in superagers than in typical older adults. Cross-sectional differences showed higher fractional anisotropy (FA) in superagers mostly in frontal fibers and lower mean diffusivity (MD) in most white matter tracts, expressed as an anteroposterior gradient with greater group differences in anterior tracts. FA decrease over time is slower in superagers than in typical older adults in all white matter tracts assessed, which is mirrored by MD increases over time being slower in superagers than in typical older adults in all white matter tracts except for the corticospinal tract, the uncinate fasciculus, and the forceps minor. The better preservation of white matter microstructure in superagers relative to typical older adults supports resistance to age-related brain structural changes as a mechanism underpinning the remarkable memory capacity of superagers, while their regional aging pattern is in line with the last-in-first-out hypothesis.


Asunto(s)
Envejecimiento , Sustancia Blanca , Humanos , Femenino , Sustancia Blanca/diagnóstico por imagen , Masculino , Envejecimiento/fisiología , Anciano de 80 o más Años , Anciano , Estudios Transversales , Estudios Longitudinales , Imagen de Difusión Tensora
2.
Brain ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38562097

RESUMEN

Between 2.5 and 28% of people infected with SARS-CoV-2 suffer Long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in Long COVID and the potential association between them. To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy controls chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with Long COVID assessed by ACE III screening test (Overall Cognitive level - OCLz= -0.39± 0.12) was significantly below the infection recovered-controls (OCLz= +0.32± 0.16, p< 0.01). We observed that 48% of patients with Long COVID had episodic memory deficit, with 27% also impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus. In addition, lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in widespread areas of the patients' cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency. This study shows that patients with neurological Long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.

3.
Brain ; 146(1): 135-148, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35104842

RESUMEN

Responding to threat is under strong survival pressure, promoting the evolution of systems highly optimized for the task. Though the amygdala is implicated in 'detecting' threat, its role in the action that immediately follows-'orienting'-remains unclear. Critical to mounting a targeted response, such early action requires speed, accuracy, and resilience optimally achieved through conserved, parsimonious, dedicated systems, insured against neural loss by a parallelized functional organization. These characteristics tend to conceal the underlying substrate not only from correlative methods but also from focal disruption over time scales long enough for compensatory adaptation to take place. In a study of six patients with intracranial electrodes temporarily implanted for the clinical evaluation of focal epilepsy, we investigated gaze orienting to fear during focal, transient, unilateral direct electrical disruption of the amygdala. We showed that the amygdala is necessary for rapid gaze shifts towards faces presented in the contralateral hemifield regardless of their emotional expression, establishing its functional lateralization. Behaviourally dissociating the location of presented fear from the direction of the response, we implicated the amygdala not only in detecting contralateral faces, but also in automatically orienting specifically towards fearful ones. This salience-specific role was demonstrated within a drift-diffusion model of action to manifest as an orientation bias towards the location of potential threat. Pixel-wise analysis of target facial morphology revealed scleral exposure as its primary driver, and induced gamma oscillations-obtained from intracranial local field potentials-as its time-locked electrophysiological correlate. The amygdala is here reconceptualized as a functionally lateralized instrument of early action, reconciling previous conflicting accounts confined to detection, and revealing a neural organisation analogous to the superior colliculus, with which it is phylogenetically kin. Greater clarity on its role has the potential to guide therapeutic resection, still frequently complicated by impairments of cognition and behaviour related to threat, and inform novel focal stimulation techniques for the management of neuropsychiatric conditions.


Asunto(s)
Amígdala del Cerebelo , Miedo , Humanos , Miedo/fisiología , Miedo/psicología , Cognición , Expresión Facial , Imagen por Resonancia Magnética , Estimulación Luminosa
4.
Alzheimers Dement ; 20(4): 2606-2619, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38369763

RESUMEN

INTRODUCTION: Three-dimensional (3D) histology analyses are essential to overcome sampling variability and understand pathological differences beyond the dissection axis. We present Path2MR, the first pipeline allowing 3D reconstruction of sparse human histology without a magnetic resonance imaging (MRI) reference. We implemented Path2MR with post-mortem hippocampal sections to explore pathology gradients in Alzheimer's disease. METHODS: Blockface photographs of brain hemisphere slices are used for 3D reconstruction, from which an MRI-like image is generated using machine learning. Histology sections are aligned to the reconstructed hemisphere and subsequently to an atlas in standard space. RESULTS: Path2MR successfully registered histological sections to their anatomic position along the hippocampal longitudinal axis. Combined with histopathology quantification, we found an expected peak of tau pathology at the anterior end of the hippocampus, whereas amyloid-beta (Aß) displayed a quadratic anterior-posterior distribution. CONCLUSION: Path2MR, which enables 3D histology using any brain bank data set, revealed significant differences along the hippocampus between tau and Aß. HIGHLIGHTS: Path2MR enables three-dimensional (3D) brain reconstruction from blockface dissection photographs. This pipeline does not require dense specimen sampling or a subject-specific magnetic resonance (MR) image. Anatomically consistent mapping of hippocampal sections was obtained with Path2MR. Our analyses revealed an anterior-posterior gradient of hippocampal tau pathology. In contrast, the peak of amyloid-beta (Aß) deposition was closer to the hippocampal body.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Hipocampo/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Proteínas tau/metabolismo
5.
Alzheimers Dement ; 19(11): 5307-5315, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37366342

RESUMEN

INTRODUCTION: Hippocampal sclerosis of aging (HS) is an important component of combined dementia neuropathology. However, the temporal evolution of its histologically-defined features is unknown. We investigated pre-mortem longitudinal hippocampal atrophy associated with HS, as well as with other dementia-associated pathologies. METHODS: We analyzed hippocampal volumes from magnetic resonance imaging (MRI) segmentations in 64 dementia patients with longitudinal MRI follow-up and post-mortem neuropathological evaluation, including HS assessment in the hippocampal head and body. RESULTS: Significant HS-associated hippocampal volume changes were observed throughout the evaluated timespan, up to 11.75 years before death. These changes were independent of age and Alzheimer's disease (AD) neuropathology and were driven specifically by CA1 and subiculum atrophy. AD pathology, but not HS, was associated significantly with the rate of hippocampal atrophy. DISCUSSION: HS-associated volume changes are detectable on MRI earlier than 10 years before death. Based on these findings, volumetric cutoffs could be derived for in vivo differentiation between HS and AD. HIGHLIGHTS: Hippocampal atrophy was found in HS+ patients earlier than 10 years before death. These early pre-mortem changes were driven by reduced CA1 and subiculum volumes. Rates of hippocampus and subfield volume decline were independent of HS. In contrast, steeper atrophy rates were associated with AD pathology burden. Differentiation between AD and HS could be facilitated based on these MRI findings.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis del Hipocampo , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Atrofia/patología
6.
Alzheimers Dement ; 19(7): 3028-3040, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36691755

RESUMEN

INTRODUCTION: Hippocampal sclerosis of aging (HS) is defined by end-stage histological findings, strongly associated with limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE). We aimed to characterize features of early HS to refine the understanding of its role within combined pathology. METHODS: We studied 159 brain donations from the multimodal Vallecas Alzheimer's Center Study. A staging system (0 to IV) was developed to account for HS progression and analyzed in relation to pre-mortem cognitive and magnetic resonance imaging (MRI) data. RESULTS: Our HS staging system displayed a significant correlation with disease duration, cognitive performance, and combined neuropathologies, especially with LATE. Two-level assessment along the hippocampal longitudinal axis revealed an anterior-posterior gradient of HS severity. In vivo MRI showed focally reduced hippocampal gray matter density as a function of HS staging. DISCUSSION: The association of this staging system with clinical progression and structural differences supports its utility in the characterization and potential in vivo monitoring of HS. HIGHLIGHTS: The definition of hippocampal sclerosis of aging (HS) is currently limited to an end-stage pathological fingerprint. We characterize early HS histological features to define a complete staging system. The proposed staging displays a parallel but not identical progression to limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE). The proposed staging also reflects the expected demographic and cognitive differences associated with HS. In vivo magnetic resonance imaging (MRI) showed focal hippocampal gray matter loss as a function of HS staging.


Asunto(s)
Enfermedad de Alzheimer , Encefalopatías , Esclerosis del Hipocampo , Humanos , Sustancia Gris/patología , Envejecimiento/patología , Hipocampo/patología , Encefalopatías/metabolismo , Encefalopatías/patología , Proteínas de Unión al ADN/metabolismo , Enfermedad de Alzheimer/patología
7.
Neuroimage ; 263: 119630, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113738

RESUMEN

Memory normally declines with ageing and these age-related cognitive changes are associated with changes in brain structure. Episodic memory retrieval has been widely studied during ageing, whereas learning has received less attention. Here we examined the neural correlates of episodic learning rate in ageing. Our study sample consisted of 982 cognitively healthy female and male older participants from the Vallecas Project cohort, without a clinical diagnosis of mild cognitive impairment or dementia. The learning rate across the three consecutive recall trials of the verbal memory task (Free and Cued Selective Reminding Test) recall trials was used as a predictor of grey matter (GM) using voxel-based morphometry, and WM microstructure using tract-based spatial statistics on fractional anisotropy (FA) and mean diffusivity (MD) measures. Immediate Recall improved by 1.4 items per trial on average, and this episodic learning rate was faster in women and negatively associated with age. Structurally, hippocampal and anterior thalamic GM volume correlated positively with learning rate. Learning also correlated with the integrity of WM microstructure (high FA and low MD) in an extensive network of tracts including bilateral anterior thalamic radiation, fornix, and long-range tracts. These results suggest that episodic learning rate is associated with key anatomical structures for memory functioning, motivating further exploration of the differential diagnostic properties between episodic learning rate and retrieval in ageing.


Asunto(s)
Envejecimiento Saludable , Memoria Episódica , Sustancia Blanca , Femenino , Humanos , Masculino , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Pruebas Neuropsicológicas
8.
Cereb Cortex ; 31(5): 2742-2758, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33406245

RESUMEN

Inhibitory control is considered a compromised cognitive function in obsessive-compulsive (OCD) patients and likely linked to corticostriatal circuitry disturbances. Here, 9 refractory OCD patients treated with deep brain stimulation (DBS) were evaluated to address the dynamic modulations of large-scale cortical network activity involved in inhibitory control after nucleus accumbens (NAc) stimulation and their relationship with cortical thickness. A comparison of DBS "On/Off" states showed that patients committed fewer errors and exhibited increased intraindividual reaction time variability, resulting in improved goal maintenance abilities and proactive inhibitory control. Visual P3 event-related potentials showed increased amplitudes during Go/NoGo performance. Go and NoGo responses increased cortical activation mainly over the right inferior frontal gyrus and medial frontal gyrus, respectively. Moreover, increased cortical activation in these areas was equally associated with a higher cortical thickness within the prefrontal cortex. These results highlight the critical role of NAc DBS for preferentially modulating the neuronal activity underlying sustained speed responses and inhibitory control in OCD patients and show that it is triggered by reorganizing brain functions to the right prefrontal regions, which may depend on the underlying cortical thinning. Our findings provide updated structural and functional evidence that supports critical dopaminergic-mediated frontal-striatal network interactions in OCD.


Asunto(s)
Grosor de la Corteza Cerebral , Estimulación Encefálica Profunda/métodos , Inhibición Psicológica , Núcleo Accumbens , Trastorno Obsesivo Compulsivo/terapia , Corteza Prefrontal/fisiopatología , Adulto , Variación Biológica Individual , Potenciales Relacionados con Evento P300/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastorno Obsesivo Compulsivo/fisiopatología , Adulto Joven
9.
Neuroimage ; 219: 117018, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32505698

RESUMEN

Deep Brain Stimulation (DBS) is an established treatment option for movement disorders and is under investigation for treatment in a growing number of other brain diseases. It has been shown that exact electrode placement crucially affects the efficacy of DBS and this should be considered when investigating novel indications or DBS targets. To measure clinical improvement as a function of electrode placement, neuroscientific methodology and specialized software tools are needed. Such tools should have the goal to make electrode placement comparable across patients and DBS centers, and include statistical analysis options to validate and define optimal targets. Moreover, to allow for comparability across different centers, these need to be performed within an algorithmically and anatomically standardized and openly available group space. With the publication of Lead-DBS software in 2014, an open-source tool was introduced that allowed for precise electrode reconstructions based on pre- and postoperative neuroimaging data. Here, we introduce Lead Group, implemented within the Lead-DBS environment and specifically designed to meet aforementioned demands. In the present article, we showcase the various processing streams of Lead Group in a retrospective cohort of 51 patients suffering from Parkinson's disease, who were implanted with DBS electrodes to the subthalamic nucleus (STN). Specifically, we demonstrate various ways to visualize placement of all electrodes in the group and map clinical improvement values to subcortical space. We do so by using active coordinates and volumes of tissue activated, showing converging evidence of an optimal DBS target in the dorsolateral STN. Second, we relate DBS outcome to the impact of each electrode on local structures by measuring overlap of stimulation volumes with the STN. Finally, we explore the software functions for connectomic mapping, which may be used to relate DBS outcomes to connectivity estimates with remote brain areas. The manuscript is accompanied by a walkthrough tutorial which allows users to reproduce all main results presented here. All data and code needed to reproduce results are openly available.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Neuroimagen/métodos , Núcleo Subtalámico/fisiología , Anciano , Conectoma , Electrodos Implantados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Resultado del Tratamiento
10.
Nat Rev Neurosci ; 15(10): 655-69, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25234264

RESUMEN

The precise functional role of the hippocampus remains a topic of much debate. The dominant view is that the dorsal (or posterior) hippocampus is implicated in memory and spatial navigation and the ventral (or anterior) hippocampus mediates anxiety-related behaviours. However, this 'dichotomy view' may need revision. Gene expression studies demonstrate multiple functional domains along the hippocampal long axis, which often exhibit sharply demarcated borders. By contrast, anatomical studies and electrophysiological recordings in rodents suggest that the long axis is organized along a gradient. Together, these observations suggest a model in which functional long-axis gradients are superimposed on discrete functional domains. This model provides a potential framework to explain and test the multiple functions ascribed to the hippocampus.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/fisiología , Animales , Expresión Génica , Humanos
11.
J Neurosci ; 37(14): 3840-3847, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28280254

RESUMEN

The role of neuronal oscillations in human somatosensory perception is currently unclear. To address this, here we use noninvasive brain stimulation to artificially modulate cortical network dynamics in the context of neurophysiological and behavioral recordings. We demonstrate that transcranial static magnetic field stimulation (tSMS) over the somatosensory parietal cortex increases oscillatory power specifically in the alpha range, without significantly affecting bottom-up thalamocortical inputs indexed by the early cortical component of somatosensory evoked potentials. Critically, we next show that parietal tSMS enhances the detection of near-threshold somatosensory stimuli. Interestingly, this behavioral improvement reflects a decrease of habituation to somatosensation. Our data therefore provide causal evidence that somatosensory perception depends on parietal alpha activity.SIGNIFICANCE STATEMENT Artificially increasing alpha power by placing a powerful magnetic field over the somatosensory cortex overcomes the natural decline in detection probability of a repeated near-threshold sensory stimulus.


Asunto(s)
Electroencefalografía/métodos , Potenciales Evocados Somatosensoriales/fisiología , Lóbulo Parietal/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Estudios Cruzados , Método Doble Ciego , Estimulación Eléctrica/métodos , Femenino , Humanos , Campos Magnéticos , Masculino , Nervio Mediano/fisiología
12.
Cephalalgia ; 38(8): 1493-1497, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29020806

RESUMEN

Background Transcranial static magnetic field stimulation (tSMS) reduces cortical excitability in humans. Methods The objective of this study was to determine whether tSMS over the occipital cortex is effective in reducing experimental photophobia. In a sham-controlled double-blind crossover study, tSMS (or sham) was applied for 10 minutes with a cylindrical magnet on the occiput of 20 healthy subjects. We assessed subjective discomfort induced by low-intensity and high-intensity visual stimuli presented in a dark room before, during and after tSMS (or sham). Results Compared to sham, tSMS significantly reduced the discomfort induced by high-intensity light stimuli. Conclusions The visual cortex may contribute to visual discomfort in experimental photophobia, providing a rationale for investigating tSMS as a possible treatment for photophobia in migraine.


Asunto(s)
Fotofobia/terapia , Estimulación Magnética Transcraneal/métodos , Corteza Visual/fisiología , Adulto , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
13.
J Neurosci ; 35(24): 9182-93, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26085640

RESUMEN

Transcranial static magnetic field stimulation (tSMS) was recently introduced as a promising tool to modulate human cerebral excitability in a noninvasive and portable way. However, a demonstration that static magnetic fields can influence human brain activity and behavior is currently lacking, despite evidence that static magnetic fields interfere with neuronal function in animals. Here we show that transcranial application of a static magnetic field (120-200 mT at 2-3 cm from the magnet surface) over the human occiput produces a focal increase in the power of alpha oscillations in underlying cortex. Critically, this neurophysiological effect of tSMS is paralleled by slowed performance in a visual search task, selectively for the most difficult target detection trials. The typical relationship between prestimulus alpha power over posterior cortical areas and reaction time (RT) to targets during tSMS is altered such that tSMS-dependent increases in alpha power are associated with longer RTs for difficult, but not easy, target detection trials. Our results directly demonstrate that a powerful magnet placed on the scalp modulates normal brain activity and induces behavioral changes in humans.


Asunto(s)
Ritmo alfa/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Estimulación Magnética Transcraneal/métodos , Corteza Visual/fisiología , Adulto , Estudios Cruzados , Método Doble Ciego , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Método Simple Ciego , Adulto Joven
14.
Brain ; 138(Pt 12): 3496-502, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26428667

RESUMEN

Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established.


Asunto(s)
Toma de Decisiones/fisiología , Núcleo Accumbens/fisiología , Asunción de Riesgos , Estimulación Encefálica Profunda , Humanos , Recompensa
15.
Behav Brain Sci ; 39: e224, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28355835

RESUMEN

Emotional events can either impair or enhance memory for immediately preceding items. The GANE model explains this bidirectional effect as a glutamate "priority" signal that modulates noradrenaline release depending on arousal state. We argue for an alternative explanation: that priority itself evokes phasic noradrenaline release. Thus, contrasting E-1 memory effects are explained by a mechanism based on the Bienenstock-Cooper-Munro theory.


Asunto(s)
Emociones , Memoria , Plasticidad Neuronal , Nivel de Alerta , Humanos , Factores de Tiempo
16.
Curr Alzheimer Res ; 20(11): 778-790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425106

RESUMEN

BACKGROUND: Mild Cognitive Impairment (MCI) usually precedes the symptomatic phase of dementia and constitutes a window of opportunities for preventive therapies. OBJECTIVES: The objective of this study was to predict the time an MCI patient has left to reach dementia and obtain the most likely natural history in the progression of MCI towards dementia. METHODS: This study was conducted on 633 MCI patients and 145 subjects with dementia through 4726 visits over 15 years from Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. A combination of data from AT(N) profiles at baseline and longitudinal predictive modeling was applied. A data-driven approach was proposed for categorical diagnosis prediction and timeline estimation of cognitive decline progression, which combined supervised and unsupervised learning techniques. RESULTS: A reduced vector of only neuropsychological measures was selected for training the models. At baseline, this approach had high performance in detecting subjects at high risk of converting from MCI to dementia in the coming years. Furthermore, a Disease Progression Model (DPM) was built and also verified using three metrics. As a result of the DPM focused on the studied population, it was inferred that amyloid pathology (A+) appears about 7 years before dementia, and tau pathology (T+) and neurodegeneration (N+) occur almost simultaneously, between 3 and 4 years before dementia. In addition, MCI-A+ subjects were shown to progress more rapidly to dementia compared to MCI-A- subjects. CONCLUSION: Based on proposed natural histories and cross-sectional and longitudinal analysis of AD markers, the results indicated that only a single cerebrospinal fluid sample is necessary during the prodromal phase of AD. Prediction from MCI into dementia and its timeline can be achieved exclusively through neuropsychological measures.


Asunto(s)
Disfunción Cognitiva , Demencia , Progresión de la Enfermedad , Pruebas Neuropsicológicas , Humanos , Disfunción Cognitiva/diagnóstico , Anciano , Masculino , Femenino , Demencia/diagnóstico , Estudios Longitudinales , Anciano de 80 o más Años , Neuroimagen , Estudios de Cohortes
17.
R Soc Open Sci ; 11(6): 230926, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100193

RESUMEN

As we navigate our day-to-day lives, we regularly adapt our behaviour according to what we predict may happen next in a given context. When an unexpected event occurs, our predictions about the world are disrupted and must be updated. Unexpected, isolated events, particularly with high emotionality, are also better recalled. In the present work, we investigated how oddballs affect recall dynamics. Seventy young, healthy participants encoded word lists containing either emotional or perceptual oddballs at varying stimulus onset asynchronies followed by free recall. It is well established that after recalling an item, we have a higher probability of recalling items encoded nearby, particularly those that were encoded after the item was recalled, a phenomenon known as forward contiguity of recall. We tested how novelty (oddballs versus control words) modulated forward contiguity as a function of salience type (emotional versus perceptual). The present results provide empirical evidence of forward contiguity modulation selectively by emotional salience and suggest that recall patterns after presenting emotional and perceptual oddballs are mediated by different mechanisms.

18.
Alzheimers Res Ther ; 16(1): 46, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414035

RESUMEN

BACKGROUND: The pathophysiology of Alzheimer's disease (AD) involves ß -amyloid (A ß ) accumulation. Early identification of individuals with abnormal ß -amyloid levels is crucial, but A ß quantification with positron emission tomography (PET) and cerebrospinal fluid (CSF) is invasive and expensive. METHODS: We propose a machine learning framework using standard non-invasive (MRI, demographics, APOE, neuropsychology) measures to predict future A ß -positivity in A ß -negative individuals. We separately study A ß -positivity defined by PET and CSF. RESULTS: Cross-validated AUC for 4-year A ß conversion prediction was 0.78 for the CSF-based and 0.68 for the PET-based A ß definitions. Although not trained for the clinical status-change prediction, the CSF-based model excelled in predicting future mild cognitive impairment (MCI)/dementia conversion in cognitively normal/MCI individuals (AUCs, respectively, 0.76 and 0.89 with a separate dataset). CONCLUSION: Standard measures have potential in detecting future A ß -positivity and assessing conversion risk, even in cognitively normal individuals. The CSF-based definition led to better predictions than the PET-based definition.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Tomografía de Emisión de Positrones , Aprendizaje Automático , Proteínas tau/líquido cefalorraquídeo
19.
Cell Rep ; 43(4): 114071, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38592973

RESUMEN

Understanding how emotional processing modulates learning and memory is crucial for the treatment of neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippocampus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL population spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons exhibiting mixed selectivity on a single-unit level collectively processes emotion and memory as a network, with a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity enables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and could provide insights into how emotion alters memory during healthy and maladaptive learning.


Asunto(s)
Emociones , Memoria , Neuronas , Humanos , Emociones/fisiología , Neuronas/fisiología , Memoria/fisiología , Masculino , Adulto , Femenino , Lóbulo Temporal/fisiología , Amígdala del Cerebelo/fisiología , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Adulto Joven
20.
Ann Clin Transl Neurol ; 11(1): 143-155, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38158639

RESUMEN

OBJECTIVE: Alzheimer's disease (AD) is a major health concern for aging adults with Down syndrome (DS), but conventional diagnostic techniques are less reliable in those with severe baseline disability. Likewise, acquisition of magnetic resonance imaging to evaluate cerebral atrophy is not straightforward, as prolonged scanning times are less tolerated in this population. Computed tomography (CT) scans can be obtained faster, but poor contrast resolution limits its function for morphometric analysis. We implemented an automated analysis of CT scans to characterize differences across dementia stages in a cross-sectional study of an adult DS cohort. METHODS: CT scans of 98 individuals were analyzed using an automatic algorithm. Voxel-based correlations with clinical dementia stages and AD plasma biomarkers (phosphorylated tau-181 and neurofilament light chain) were identified, and their dysconnectomic patterns delineated. RESULTS: Dementia severity was negatively correlated with gray (GM) and white matter (WM) volumes in temporal lobe regions, including parahippocampal gyri. Dysconnectome analysis revealed an association between WM loss and temporal lobe GM volume reduction. AD biomarkers were negatively associated with GM volume in hippocampal and cingulate gyri. INTERPRETATION: Our automated algorithm and novel dysconnectomic analysis of CT scans successfully described brain morphometric differences related to AD in adults with DS, providing a new avenue for neuroimaging analysis in populations for whom magnetic resonance imaging is difficult to obtain.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Adulto , Humanos , Síndrome de Down/diagnóstico por imagen , Síndrome de Down/patología , Estudios Transversales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA