Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771358

RESUMEN

PURPOSE: Autophagy and heat shock protein (HSP) response are proteostatic systems involved in the acute and adaptive responses to exercise. These systems may upregulate sequentially following cellular stress including acute exercise, however, currently few data exist in humans. This study investigated the autophagic and HSP responses to acute intense lower body resistance exercise in peripheral blood mononuclear cells (PBMCs) with and without branched-chain amino acids (BCAA) supplementation. METHODS: Twenty resistance-trained males (22.3 ± 1.5 yr; 175.4 ± .7 cm; 86.4 ± 15.6 kg) performed a bout of intense lower body resistance exercise and markers of autophagy and HSP70 were measured immediately post- (IPE) and 2, 4, 24, 48, and 72 h post-exercise. Prior to resistance exercise, 10 subjects were randomly assigned to BCAA supplementation of 0.22 g/kg/d for 5 days pre-exercise and up to 72 h following exercise while the other 10 subjects consumed a placebo (PLCB). RESULTS: There were no difference in autophagy markers or HSP70 expression between BCAA and PLCB groups. LC3II protein expression was significantly lower 2 and 4 h post-exercise compared to pre-exercise. LC3II: I ratio was not different at any time point compared to pre-exercise. Protein expression of p62 was lower IPE, 2, and 4 h post-exercise and elevated 24 h post-exercise. HSP70 expression was elevated 48 and 72 h post-exercise. CONCLUSIONS: Autophagy and HSP70 are upregulated in PBMCs following intense resistance exercise with autophagy increasing initially post-exercise and HSP response in the latter period. Moreover, BCAA supplementation did not affect this response.

2.
Basic Res Cardiol ; 118(1): 15, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138037

RESUMEN

Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with ß-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.


Asunto(s)
Miocitos Cardíacos , Retículo Sarcoplasmático , Ratas , Masculino , Femenino , Animales , Humanos , Anciano , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caracteres Sexuales , Mitocondrias/metabolismo , Señalización del Calcio , Calcio/metabolismo
4.
Br J Nutr ; 130(5): 827-840, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36404739

RESUMEN

The purpose of this investigation was to expand upon the limited existing research examining the test-retest reliability, cross-sectional validity and longitudinal validity of a sample of bioelectrical impedance analysis (BIA) devices as compared with a laboratory four-compartment (4C) model. Seventy-three healthy participants aged 19-50 years were assessed by each of fifteen BIA devices, with resulting body fat percentage estimates compared with a 4C model utilising air displacement plethysmography, dual-energy X-ray absorptiometry and bioimpedance spectroscopy. A subset of thirty-seven participants returned for a second visit 12-16 weeks later and were included in an analysis of longitudinal validity. The sample of devices included fourteen consumer-grade and one research-grade model in a variety of configurations: hand-to-hand, foot-to-foot and bilateral hand-to-foot (octapolar). BIA devices demonstrated high reliability, with precision error ranging from 0·0 to 0·49 %. Cross-sectional validity varied, with constant error relative to the 4C model ranging from -3·5 (sd 4·1) % to 11·7 (sd 4·7) %, standard error of the estimate values of 3·1-7·5 % and Lin's concordance correlation coefficients (CCC) of 0·48-0·94. For longitudinal validity, constant error ranged from -0·4 (sd 2·1) % to 1·3 (sd 2·7) %, with standard error of the estimate values of 1·7-2·6 % and Lin's CCC of 0·37-0·78. While performance varied widely across the sample investigated, select models of BIA devices (particularly octapolar and select foot-to-foot devices) may hold potential utility for the tracking of body composition over time, particularly in contexts in which the purchase or use of a research-grade device is infeasible.


Asunto(s)
Composición Corporal , Humanos , Reproducibilidad de los Resultados , Impedancia Eléctrica , Estudios Transversales , Absorciometría de Fotón/métodos
5.
Br J Nutr ; 127(11): 1656-1674, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34325758

RESUMEN

The present study reports the validity of multiple assessment methods for tracking changes in body composition over time and quantifies the influence of unstandardised pre-assessment procedures. Resistance-trained males underwent 6 weeks of structured resistance training alongside a hyperenergetic diet, with four total body composition evaluations. Pre-intervention, body composition was estimated in standardised (i.e. overnight fasted and rested) and unstandardised (i.e. no control over pre-assessment activities) conditions within a single day. The same assessments were repeated post-intervention, and body composition changes were estimated from all possible combinations of pre-intervention and post-intervention data. Assessment methods included dual-energy X-ray absorptiometry (DXA), air displacement plethysmography, three-dimensional optical imaging, single- and multi-frequency bioelectrical impedance analysis, bioimpedance spectroscopy and multi-component models. Data were analysed using equivalence testing, Bland-Altman analysis, Friedman tests and validity metrics. Most methods demonstrated meaningful errors when unstandardised conditions were present pre- and/or post-intervention, resulting in blunted or exaggerated changes relative to true body composition changes. However, some methods - particularly DXA and select digital anthropometry techniques - were more robust to a lack of standardisation. In standardised conditions, methods exhibiting the highest overall agreement with the four-component model were other multi-component models, select bioimpedance technologies, DXA and select digital anthropometry techniques. Although specific methods varied, the present study broadly demonstrates the importance of controlling and documenting standardisation procedures prior to body composition assessments across distinct assessment technologies, particularly for longitudinal investigations. Additionally, there are meaningful differences in the ability of common methods to track longitudinal body composition changes.


Asunto(s)
Composición Corporal , Humanos , Masculino , Impedancia Eléctrica , Reproducibilidad de los Resultados , Antropometría/métodos , Absorciometría de Fotón/métodos
6.
J Strength Cond Res ; 36(1): 1-9, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34941608

RESUMEN

ABSTRACT: Mangine, GT, Serafini, PR, Stratton, MT, Olmos, AA, VanDusseldorp, TA, and Feito, Y. Effect of the repetitions-in-reserve resistance training strategy on bench press performance, perceived effort, and recovery in trained men. J Strength Cond Res 36(1): 1-9, 2022-This study examined the effects of the repetitions-in-reserve (RIR) strategy on resistance exercise performance, perceived effort, and recovery. Fourteen resistance-trained men (24.6 ± 3.0 years, 176 ± 5 cm, 85.7 ± 14.0 kg) completed 2 bench press protocols in a randomized crossover fashion. The protocols consisted of 4 sets at 80% of 1 repetition maximum (1RM) to a self-reported 3-RIR and a fifth set to failure or all 5 sets to failure (0-RIR). Barbell kinetics (velocity, rate of force development, and impulse), repetition volume, total work, and ratings of perceived exertion (RPE) were quantified on each set. Barbell kinetics were reassessed during one set of 3 repetitions at 80% 1RM completed at 24-hour, 48-hour, and 72-hour postexercise. Blood samples were collected before and after exercise at 6 hours, 24 hours, 48 hours, and 72 hours and analyzed for concentrations of creatine kinase (CK). Separate, 2-way repeated-measures analysis of variance revealed significant interactions (p < 0.001) where 3-RIR better maintained repetitions and work at greater average velocity (+0.6 m·s-1) and lower RPE (0-RIR = 10; 3-RIR = 8.2) across all sets. No differences were seen between conditions for CK at 6 hours postexercise (3-RIR: 32.2 ± 55.3%; 0-RIR: 40.8 ± 66.0%) or for CK and barbell kinetics at 24 hours to 72 hours postexercise. Although no differences were seen for recovery, the RIR strategy enabled work to be better sustained across sets at a lower perceived effort and higher average velocity. This strategy could be used to manage fatigue and better sustain effort and volume during a resistance training session.


Asunto(s)
Entrenamiento de Fuerza , Estudios Cruzados , Ejercicio Físico , Fatiga , Humanos , Masculino , Autoinforme , Levantamiento de Peso
7.
J Strength Cond Res ; 36(11): 3093-3104, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34172636

RESUMEN

ABSTRACT: Rodriguez, C, Harty, PS, Stratton, MT, Siedler, MR, Smith, RW, Johnson, BA, Dellinger, JR, Williams, AD, White, SJ, Benavides, ML, and Tinsley, GM. Comparison of indirect calorimetry and common prediction equations for evaluating changes in resting metabolic rate induced by resistance training and a hypercaloric diet. J Strength Cond Res 36(11): 3093-3104, 2022-The ability to accurately identify resting metabolic rate (RMR) changes over time allows practitioners to prescribe appropriate adjustments to nutritional intake. However, there is a lack of data concerning the longitudinal utility of commonly used RMR prediction equations. The purpose of this study was to evaluate the validity of several commonly used prediction equations to track RMR changes during a hypercaloric nutritional intervention and supervised resistance exercise training program. Twenty resistance-trained men completed the study. The protocol lasted 6 weeks, and subjects underwent RMR assessments by indirect calorimetry (IC) preintervention and postintervention to obtain reference values. Existing RMR prediction equations based on body mass (BM) or dual-energy X-ray absorptiometry fat-free mass (FFM) were also evaluated. Equivalence testing was used to evaluate whether each prediction equation demonstrated equivalence with IC. Null hypothesis significance testing was also performed, and Bland-Altman analysis was used alongside linear regression to assess the degree of proportional bias. Body mass and FFM increased by 3.6 ± 1.7 kg and 2.4 ± 1.6 kg, respectively. Indirect calorimetry RMR increased by 165 ± 97 kcal·d -1 , and RMR:FFM increased by 5.6 ± 5.2%. All prediction equations underestimated mean RMR changes relative to IC, with magnitudes ranging from 75 to 155 kcal·d -1 , while also displaying unacceptable levels of negative proportional bias. In addition, no equation demonstrated equivalence with IC. Common RMR prediction equations based on BM or FFM did not fully detect the increase in RMR observed with resistance training plus a hypercaloric diet. Overall, the evaluated prediction equations are unsuitable for estimating RMR changes in the context of this study.


Asunto(s)
Metabolismo Basal , Entrenamiento de Fuerza , Masculino , Humanos , Calorimetría Indirecta/métodos , Absorciometría de Fotón , Dieta , Composición Corporal
8.
J Mol Cell Cardiol ; 157: 90-97, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33915138

RESUMEN

Biological aging is attributed to progressive dysfunction in systems governing genetic and metabolic integrity. At the cellular level, aging is evident by accumulated DNA damage and mutation, reactive oxygen species, alternate lipid and protein modifications, alternate gene expression programs, and mitochondrial dysfunction. These effects sum to drive altered tissue morphology and organ dysfunction. Protein-acylation has emerged as a critical mediator of age-dependent changes in these processes. Despite decades of research focus from academia and industry, heart failure remains a leading cause of death in the United States while the 5 year mortality rate for heart failure remains over 40%. Over 90% of heart failure deaths occur in patients over the age of 65 and heart failure is the leading cause of hospitalization in Medicare beneficiaries. In 1931, Cole and Koch discovered age-dependent accumulation of phosphates in skeletal muscle. These and similar findings provided supporting evidence for, now well accepted, theories linking metabolism and aging. Nearly two decades later, age-associated alterations in biochemical molecules were described in the heart. From these small beginnings, the field has grown substantially in recent years. This growing research focus on cardiac aging has, in part, been driven by advances on multiple public health fronts that allow population level clinical presentation of aging related disorders. It is estimated that by 2030, 25% of the worldwide population will be over the age of 65. This review provides an overview of acetylation-dependent regulation of biological processes related to cardiac aging and introduces emerging non-acetyl, acyl-lysine modifications in cardiac function and aging.


Asunto(s)
Envejecimiento/metabolismo , Miocardio/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Biomarcadores , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Metabolismo Energético , Epigénesis Genética , Regulación de la Expresión Génica , Corazón/fisiopatología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Lisina/metabolismo , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Sarcómeros/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 321(2): H382-H389, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142888

RESUMEN

Pulmonary hypertension (PH) is associated with structural remodeling of pulmonary arteries (PAs) because of excessive proliferation of fibroblasts, endothelial cells, and smooth muscle cells (SMCs). The peptide hormone angiotensin II (ANG II) contributes to pulmonary vascular remodeling, in part, through its ability to trigger extracellular signal-regulated kinase (ERK1/2) activation. Here, we demonstrate that the ERK1/2 phosphatase, dual-specificity phosphatase 5 (DUSP5), functions as a negative regulator of ANG II-mediated SMC proliferation and PH. In contrast to wild-type controls, Dusp5 null mice infused with ANG II developed PH and right ventricular (RV) hypertrophy. PH in Dusp5 null mice was associated with thickening of the medial layer of small PAs, suggesting an in vivo role for DUSP5 as a negative regulator of ANG II-dependent SMC proliferation. Consistent with this, overexpression of DUSP5 blocked ANG II-mediated proliferation of cultured human pulmonary artery SMCs (hPASMCs) derived from patients with idiopathic PH or from failed donor controls. Collectively, the data support a role for DUSP5 as a feedback inhibitor of ANG II-mediated ERK signaling and PASMC proliferation and suggest that disruption of this circuit leads to adverse cardiopulmonary remodeling.NEW & NOTEWORTHY Dual-specificity phosphatases (DUSPs) serve critical roles in the regulation of mitogen-activated protein kinases, but their functions in the cardiovascular system remain poorly defined. Here, we provide evidence that DUSP5, which resides in the nucleus and specifically dephosphorylates extracellular signal-regulated kinase (ERK1/2), blocks pulmonary vascular smooth muscle cell proliferation. In response to angiotensin II infusion, mice lacking DUSP5 develop pulmonary hypertension and right ventricular cardiac hypertrophy. These findings illustrate DUSP5-mediated suppression of ERK signaling in the lungs as a protective mechanism.


Asunto(s)
Proliferación Celular/genética , Fosfatasas de Especificidad Dual/genética , Ventrículos Cardíacos/metabolismo , Hipertensión Pulmonar/genética , Hipertrofia Ventricular Derecha/genética , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Remodelación Vascular/genética , Angiotensina II/farmacología , Animales , Estudios de Casos y Controles , Células Cultivadas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/fisiopatología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Vasoconstrictores/farmacología
10.
Circ Res ; 125(7): 662-677, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409188

RESUMEN

RATIONALE: Small molecule inhibitors of the acetyl-histone binding protein BRD4 have been shown to block cardiac fibrosis in preclinical models of heart failure (HF). However, since the inhibitors target BRD4 ubiquitously, it is unclear whether this chromatin reader protein functions in cell type-specific manner to control pathological myocardial fibrosis. Furthermore, the molecular mechanisms by which BRD4 stimulates the transcriptional program for cardiac fibrosis remain unknown. OBJECTIVE: We sought to test the hypothesis that BRD4 functions in a cell-autonomous and signal-responsive manner to control activation of cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. METHODS AND RESULTS: RNA-sequencing, mass spectrometry, and cell-based assays employing primary adult rat ventricular fibroblasts demonstrated that BRD4 functions as an effector of TGF-ß (transforming growth factor-ß) signaling to stimulate conversion of quiescent cardiac fibroblasts into Periostin (Postn)-positive cells that express high levels of extracellular matrix. These findings were confirmed in vivo through whole-transcriptome analysis of cardiac fibroblasts from mice subjected to transverse aortic constriction and treated with the small molecule BRD4 inhibitor, JQ1. Chromatin immunoprecipitation-sequencing revealed that BRD4 undergoes stimulus-dependent, genome-wide redistribution in cardiac fibroblasts, becoming enriched on a subset of enhancers and super-enhancers, and leading to RNA polymerase II activation and expression of downstream target genes. Employing the Sertad4 (SERTA domain-containing protein 4) locus as a prototype, we demonstrate that dynamic chromatin targeting of BRD4 is controlled, in part, by p38 MAPK (mitogen-activated protein kinase) and provide evidence of a critical function for Sertad4 in TGF-ß-mediated cardiac fibroblast activation. CONCLUSIONS: These findings define BRD4 as a central regulator of the pro-fibrotic cardiac fibroblast phenotype, establish a p38-dependent signaling circuit for epigenetic reprogramming in heart failure, and uncover a novel role for Sertad4. The work provides a mechanistic foundation for the development of BRD4 inhibitors as targeted anti-fibrotic therapies for the heart.


Asunto(s)
Cromatina/metabolismo , Insuficiencia Cardíaca/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Miofibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Azepinas/farmacología , Azepinas/uso terapéutico , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Elementos de Facilitación Genéticos , Epigénesis Genética , Matriz Extracelular/metabolismo , Femenino , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Unión Proteica , ARN Polimerasa II/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcriptoma , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Triazoles/farmacología , Triazoles/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
J Clin Densitom ; 24(2): 294-307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32571645

RESUMEN

INTRODUCTION/BACKGROUND: Few investigations have sought to explain discrepancies between dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA) body composition estimates. The purpose of this analysis was to explore physiological and anthropometric predictors of discrepancies between DXA and BIA total and segmental body composition estimates. METHODOLOGY: Assessments via DXA (GE Lunar Prodigy) and single-frequency BIA (RJL Systems Quantum V) were performed in 179 adults (103 F, 76 M, age: 33.6 ± 15.3 yr; BMI: 24.9 ± 4.3 kg/m2). Potential predictor variables for differences between DXA and BIA total and segmental fat mass (FM) and lean soft tissue (LST) estimates were obtained from demographics and laboratory techniques, including DXA, BIA, bioimpedance spectroscopy, air displacement plethysmography, and 3-dimensional optical scanning. To determine meaningful predictors, Bayesian robust regression models were fit using a t-distribution and regularized hierarchical shrinkage "horseshoe" prior. Standardized model coefficients (ß) were generated, and leave-one-out cross validation was used to assess model predictive performance. RESULTS: LST hydration (i.e., total body water:LST) was a predictor of discrepancies in all FM and LST variables (|ß|: 0.20-0.82). Additionally, extracellular fluid percentage was a predictor for nearly all outcomes (|ß|: 0.19-0.40). Height influenced the agreement between whole-body estimates (|ß|: 0.74-0.77), while the mass, length, and composition of body segments were predictors for segmental LST estimates (|ß|: 0.23-3.04). Predictors of segmental FM errors were less consistent. Select sex-, race-, or age-based differences between methods were observed. The accuracy of whole-body models was superior to segmental models (leave-one-out cross-validation-adjusted R2 of 0.83-0.85 for FMTOTAL and LSTTOTAL vs. 0.20-0.76 for segmental estimates). For segmental models, predictive performance decreased in the order of: appendicular lean soft tissue, LSTLEGS, LSTTRUNK and FMLEGS, FMARMS, FMTRUNK, and LSTARMS. CONCLUSIONS: These findings indicate the importance of LST hydration, extracellular fluid content, and height for explaining discrepancies between DXA and BIA body composition estimates. These general findings and quantitative interpretation based on the presented data allow for a better understanding of sources of error between 2 popular segmental body composition techniques and facilitate interpretation of estimates from these technologies.


Asunto(s)
Tejido Adiposo , Composición Corporal , Absorciometría de Fotón , Tejido Adiposo/metabolismo , Adolescente , Adulto , Teorema de Bayes , Índice de Masa Corporal , Impedancia Eléctrica , Humanos , Persona de Mediana Edad , Adulto Joven
12.
J Strength Cond Res ; 35(8): 2067-2074, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34100783

RESUMEN

ABSTRACT: Mangine, GT, Eggerth, A, Gough, J, Stratton, MT, Feito, Y, and VanDusseldorp, TA. Endocrine and body composition changes across a competitive season in collegiate speed-power track and field athletes. J Strength Cond Res 35(8): 2067-2074, 2021-Maintaining lean mass is important for track and field (TF) athletes who compete in speed-power events, but little is known about how lean mass and related hormones might change over an 8- to 10-month collegiate season. Therefore, to monitor changes in free testosterone (T), cortisol (C), and body composition in TF athletes across their entire competitive season, 9 female (20.3 ± 1.2 years, 169 ± 5 cm, and 67.6 ± 8.5 kg) and 7 male (21.1 ± 2.0 years, 181 ± 9 cm, and 77.3 ± 5.9 kg) Division I TF athletes provided resting and fasted blood samples at the onset of their indoor season (baseline), before and on returning from the indoor conference championships (ICCs), at the beginning and end of a heavy midseason training week (HVY), and before leaving for the National Collegiate Athletic Association (NCAA) Championships. Body composition was also assessed at each of these periods using a 4-compartment model. Except for a 20% reduction (p = 0.030) from ICCs to the onset of HVY in men only, linear mixed models with repeated measures did not reveal any changes in hormone concentrations. Compared with baseline, an overall increase in fat-free mass was observed at HVY (∼2.74%, p = 0.023) before it reduced by 3.81% before the NCAA Championships (p = 0.022). Despite variations in training and competition, resting concentrations of hormones indicative of anabolic status remained relatively consistent over the course of an entire season in speed-power TF athletes. Coaches and athletes may consider monitoring these variables to assess the athlete's response to the changing demands of a competitive season.


Asunto(s)
Atletismo , Atletas , Composición Corporal , Femenino , Humanos , Masculino , Estaciones del Año , Universidades
13.
Nat Prod Rep ; 37(5): 653-676, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31993614

RESUMEN

Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.


Asunto(s)
Envejecimiento/genética , Productos Biológicos/farmacología , Inflamación/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Fitoquímicos/farmacología , Acetilación , Envejecimiento/efectos de los fármacos , Productos Biológicos/química , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Dieta , Epigénesis Genética , Ácidos Grasos Volátiles/farmacología , Humanos , Inflamación/etiología , Inflamación/genética , Enfermedades Neurodegenerativas/etiología
14.
Br J Nutr ; 124(10): 1035-1043, 2020 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-32576297

RESUMEN

Eggs are considered a high-quality protein source for their complete amino acid profile and digestibility. Therefore, this study aimed to compare the effects of whole egg (WE) v. egg white (EW) ingestion during 12 weeks of resistance training (RT) on the skeletal muscle regulatory markers and body composition in resistance-trained men. Thirty resistance-trained men (mean age 24·6 (sd 2·7) years) were randomly assigned into the WE + RT (WER, n 15) or EW + RT (EWR, n 15) group. The WER group ingested three WE, while the EWR group ingested an isonitrogenous quantity of six EW per d immediately after the RT session. Serum concentrations of regulatory markers and body composition were measured at baseline and after 12 weeks. Significant main effects of time were observed for body weight (WER 1·7, EWR 1·8 kg), skeletal muscle mass (WER 2·9, EWR 2·7 kg), fibroblast growth factor-2 (WER 116·1, EWR 83·2 pg/ml) and follistatin (WER 0·05, EWR 0·04 ng/ml), which significantly increased (P < 0·05), and for fat mass (WER -1·9, EWR -1·1 kg), transforming growth factor-ß1 (WER -0·5, EWR -0·1 ng/ml), activin A (WER -6·2, EWR -4·5 pg/ml) and myostatin (WER -0·1, EWR -0·06 ng/ml), which significantly decreased (P < 0·05) in both WER and EWR groups. The consumption of eggs absent of yolk during chronic RT resulted in similar body composition and functional outcomes as WE of equal protein value. EW or WE may be used interchangeably for the dietary support of RT-induced muscular hypertrophy when protein intake is maintained.


Asunto(s)
Biomarcadores/sangre , Dieta , Clara de Huevo , Huevos , Músculo Esquelético/fisiología , Entrenamiento de Fuerza , Adulto , Composición Corporal/fisiología , Factor 2 de Crecimiento de Fibroblastos/sangre , Folistatina/sangre , Humanos , Masculino , Fuerza Muscular/fisiología , Adulto Joven
15.
J Mol Cell Cardiol ; 133: 148-163, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31211956

RESUMEN

Cardiovascular disease remains the number one cause of death and disability worldwide despite significant improvements in diagnosis, prevention, and early intervention efforts. There is an urgent need for improved understanding of cardiovascular processes responsible for disease development in order to develop more effective therapeutic strategies. Recent knowledge gleaned from the study of epigenetic mechanisms in the vasculature has uncovered new potential targets for intervention. Herein, we provide an overview of epigenetic mechanism, and review recent findings related to epigenetics in vascular diseases, highlighting classical epigenetic mechanism such as DNA methylation and histone modification as well as the newly discovered non-coding RNA mechanisms.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Enfermedades Vasculares/etiología , Animales , Ensamble y Desensamble de Cromatina , Metilación de ADN , Manejo de la Enfermedad , Estudios de Asociación Genética , Histonas/metabolismo , Humanos , Fenotipo , Procesamiento Proteico-Postraduccional , ARN no Traducido/genética , ARN no Traducido/metabolismo , Enfermedades Vasculares/diagnóstico , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/terapia
16.
J Mol Cell Cardiol ; 112: 74-82, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28886967

RESUMEN

Class I histone deacetylase (HDAC) inhibitors block hypertrophy and fibrosis of the heart by suppressing pathological signaling and gene expression programs in cardiac myocytes and fibroblasts. The impact of HDAC inhibition in unstressed cardiac cells remains poorly understood. Here, we demonstrate that treatment of cultured cardiomyocytes with small molecule HDAC inhibitors leads to dramatic induction of c-Jun amino-terminal kinase (JNK)-interacting protein-1 (JIP1) mRNA and protein expression. In contrast to prior findings, elevated levels of endogenous JIP1 in cardiomyocytes failed to significantly alter JNK signaling or cardiomyocyte hypertrophy. Instead, HDAC inhibitor-mediated induction of JIP1 was required to stimulate expression of the kinesin heavy chain family member, KIF5A. We provide evidence for an HDAC-dependent regulatory circuit that promotes formation of JIP1:KIF5A:microtubule complexes that regulate intracellular transport of cargo such as autophagosomes. These findings define a novel role for class I HDACs in the control of the JIP1/kinesin axis in cardiomyocytes, and suggest that HDAC inhibitors could be used to alter microtubule transport in the heart.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Histona Desacetilasas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Autofagia/efectos de los fármacos , Cardiomegalia/genética , Cardiomegalia/patología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Inhibidores de Histona Desacetilasas/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
17.
J Pharmacol Exp Ther ; 361(1): 140-150, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28174211

RESUMEN

Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Animales , Animales Recién Nacidos , Células Cultivadas , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
18.
J Mol Cell Cardiol ; 92: 206-13, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26876451

RESUMEN

Fibrosis is defined as excess deposition of extracellular matrix (ECM), resulting in tissue scarring and organ dysfunction. In the heart, fibrosis may be reparative, replacing areas of myocyte loss with a structural scar following infarction, or reactive, which is triggered in the absence of cell death and involves interstitial ECM deposition in response to long-lasting stress. Interstitial fibrosis can increase the passive stiffness of the myocardium, resulting in impaired relaxation and diastolic dysfunction. Additionally, fibrosis can lead to disruption of electrical conduction in the heart, causing arrhythmias, and can limit myocyte oxygen availability and thus exacerbate myocardial ischemia. Here, we review recent studies that have illustrated key roles for epigenetic events in the control of pro-fibrotic gene expression, and highlight the potential of small molecules that target epigenetic regulators as a means of treating fibrotic cardiac diseases.


Asunto(s)
Epigénesis Genética , Fibrosis/genética , Insuficiencia Cardíaca/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrosis/patología , Fibrosis/terapia , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Humanos , Miocardio/metabolismo , Miocardio/patología
19.
J Mol Cell Cardiol ; 97: 106-13, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27130278

RESUMEN

Chronic cardiac hypertrophy is maladaptive and contributes to the pathogenesis of heart failure. The objective of this study was to identify small molecule inhibitors of pathological cardiomyocyte hypertrophy. High content screening was performed with primary neonatal rat ventricular myocytes (NRVMs) cultured on 96-well plates and treated with a library of 3241 distinct small molecules. Non-toxic hit compounds that blocked hypertrophy in response to phenylephrine (PE) and phorbol myristate acetate (PMA) were identified based on their ability to reduce cell size and inhibit expression of atrial natriuretic factor (ANF), which is a biomarker of pathological cardiac hypertrophy. Many of the hit compounds are existing drugs that have not previously been evaluated for benefit in the setting of cardiovascular disease. One such compound, the anti-malarial drug artesunate, blocked left ventricular hypertrophy (LVH) and improved cardiac function in adult mice subjected to transverse aortic constriction (TAC). These findings demonstrate that phenotypic screening with primary cardiomyocytes can be used to discover anti-hypertrophic lead compounds for heart failure drug discovery. Using annotated libraries of compounds with known selectivity profiles, this screening methodology also facilitates chemical biological dissection of signaling networks that control pathological growth of the heart.


Asunto(s)
Cardiomegalia/metabolismo , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Animales , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/tratamiento farmacológico , Células Cultivadas , Modelos Animales de Enfermedad , Hemodinámica/efectos de los fármacos , Masculino , Ratones , Imagen Molecular/métodos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas , Remodelación Ventricular/efectos de los fármacos
20.
Biochem Cell Biol ; 93(2): 149-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25707943

RESUMEN

Acetylation of lysine residues within nucleosomal histone tails provides a crucial mechanism for epigenetic control of gene expression. Acetyl groups are coupled to lysine residues by histone acetyltransferases (HATs) and removed by histone deacetylases (HDACs), which are also commonly referred to as "writers" and "erasers", respectively. In addition to altering the electrostatic properties of histones, lysine acetylation often creates docking sites for bromodomain-containing "reader" proteins. This review focuses on epigenetic control of pulmonary hypertension (PH) and associated right ventricular (RV) cardiac hypertrophy and failure. Effects of small molecule HDAC inhibitors in pre-clinical models of PH are highlighted. Furthermore, we describe the recently discovered role of bromodomain and extraterminal (BET) reader proteins in the control of cardiac hypertrophy, and provide evidence suggesting that one member of this family, BRD4, contributes to the pathogenesis of RV failure. Together, the data suggest intriguing potential for pharmacological epigenetic therapies for the treatment of PH and right-sided heart failure.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Inhibidores de Histona Desacetilasas/clasificación , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Hipertensión Pulmonar/enzimología , Hipertrofia Ventricular Derecha/enzimología , Acetilación , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Humanos , Lisina , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA