Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34475612

RESUMEN

Fluorescent contrast agents targeted to cancer biomarkers are increasingly being explored for cancer detection, surgical guidance, and response monitoring. Efforts have been underway to topically apply such biomarker-targeted agents to freshly excised specimen for detecting cancer cell receptors on the surface as a method for intraoperative surgical margin assessment, including dual-probe staining methods introduce a second 'non-specific' optical agent as a control to help compensate for heterogeneous uptake and normalize the imaging field. Still, such specimen staining protocols introduce multifaceted complexity with unknown variables, such as tissue-specific diffusion, cell-specific binding and disassociation rates, and other factors, affecting the interpreted cancer-biomarker distribution across the specimen surface. The ability to recover three-dimensional dual-probe biodistributions throughout whole-specimens could offer a ground-truth validation method for examining topical staining uptake behaviors. Herein, we report on a novel method for characterizing dual-probe accumulation with 3D depth-profiles observed from a dual-probe fresh-specimen staining experiment.

2.
PLoS One ; 15(3): e0230267, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32160634

RESUMEN

PURPOSE: Rapid, intra-operative identification of tumor tissue in the margins of excised specimens has become an important focus in the pursuit of reducing re-excision rates, especially for breast conserving surgery. Dual-probe difference specimen imaging (DDSI) is an emerging approach that uses the difference in uptake/clearance kinetics between a pair of fluorescently-labeled stains, one targeted to a biomarker-of-interest and the other an untargeted isotype, to reveal receptor-specific images of the specimen. Previous studies using antibodies labeled with either enhanced Raman particles or organic fluorophores have shown promising tumor vs. normal diagnostic performance. Yet, the unique properties of quantum dot-labeled antibody complexes (QDACs), which provide spectrally-distinct fluorescence emission from a common excitation source, make them ideal candidates for this application. Herein, we evaluate the diagnostic performance of QDAC-based DDSI in excised xenografts. PROCEDURES: Excised fresh specimens of normal tissue and human tumor xenografts with elevated expression of HER2 were stained with a HER2-targeted QDAC and an untargeted QDAC isotype. Stained specimens were imaged on a custom hyperspectral imaging system capable of spectrally separating the quantum dot signatures, and images processed using the DDSI approach. The diagnostic performance of this technique under different incubation temperatures and probe concentrations was evaluated using receiver-operator characteristic analysis. RESULTS: HER2-targeted QDAC-DDSI was able to distinguish HER2(+) tumors from normal tissue with reasonably high diagnostic performance; however, this performance was sensitive to temperature during the staining procedure. Area under the curve values were 0.61 when staining at room temperature but increased to over 0.81 when staining at 37 °C. Diagnostic performance was not affected by increasing stain concentration. CONCLUSIONS: This study is the first to report dual-probe difference imaging of specimens using QDACs and hyperspectral imaging. Our results show promising diagnostic performance under certain conditions, and compel further optimization and evaluation of this intra-operative margin assessment technique.


Asunto(s)
Biomarcadores de Tumor/inmunología , Neoplasias Mamarias Experimentales/diagnóstico , Puntos Cuánticos , Animales , Anticuerpos/inmunología , Femenino , Humanos , Inmunoensayo/métodos , Inmunoensayo/normas , Células MCF-7 , Ratones , Ratones Desnudos , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Receptor ErbB-2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA