Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2305228121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38394215

RESUMEN

We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.


Asunto(s)
Evolución Biológica , Liliaceae , Filogenia , Ecosistema , Cromosomas , Especiación Genética
2.
Plant J ; 110(6): 1791-1810, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35411592

RESUMEN

Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome-scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein-coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity-associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene ß-cyclase whose function we demonstrate.


Asunto(s)
Solanum lycopersicum , Solanum , Antocianinas/genética , Cromosomas de las Plantas/genética , Solanum lycopersicum/genética , Fitomejoramiento , Solanum/genética
3.
Plant J ; 105(3): 639-648, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33140462

RESUMEN

The chloroplast RNA splicing and ribosome maturation (CRM) domain is a RNA-binding domain found in a plant-specific protein family whose characterized members play essential roles in splicing group I and group II introns in mitochondria and chloroplasts. Together, these proteins are required for splicing of the majority of the approximately 20 chloroplast introns in land plants. Here, we provide evidence from Setaria viridis and maize that an uncharacterized member of this family, CRM Family Member1 (CFM1), promotes the splicing of most of the introns that had not previously been shown to require a CRM domain protein. A Setaria mutant expressing mutated CFM1 was strongly disrupted in the splicing of three chloroplast tRNAs: trnI, trnV and trnA. Analyses by RNA gel blot and polysome association suggest that the tRNA deficiencies lead to compromised chloroplast protein synthesis and the observed whole-plant chlorotic phenotypes. Co-immunoprecipitation data demonstrate that the maize CFM1 ortholog is bound to introns whose splicing is disrupted in the cfm1 mutant. With these results, CRM domain proteins have been shown to promote the splicing of all but two of the introns found in angiosperm chloroplast genomes.


Asunto(s)
Cloroplastos/genética , Proteínas de Plantas/genética , Empalme del ARN , Setaria (Planta)/genética , Zea mays/genética , Proteínas de Cloroplastos/genética , Intrones , Mutación , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia
4.
Plant Mol Biol ; 109(4-5): 533-549, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35020104

RESUMEN

KEY MESSAGE: A combined transcriptomic and metabolic analysis of Setaria viridis leaves responding to aphid infestation was used to identify genes related to serotonin biosynthesis. Setaria viridis (green foxtail), a short life-cycle C4 plant in the Poaceae family, is the wild ancestor of Setaria italica (foxtail millet), a resilient crop that provides good yields in dry and marginal land. Although S. viridis has been studied extensively in the last decade, the molecular mechanisms of insect resistance in this species remain under-investigated. To address this issue, we performed a metabolic analysis of S. viridis and discovered that these plants accumulate the tryptophan-derived compounds tryptamine and serotonin. To elucidate the defensive functions of serotonin, Rhophalosiphum padi (bird cherry-oat aphids) were exposed to this compound, either by exogenous application to the plant medium or with artificial diet bioassays. In both cases, exposure to serotonin increased aphid mortality. To identify genes that are involved in serotonin biosynthesis, we conducted a transcriptome analysis and identified several predicted S. viridis tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) genes. Two candidate genes were ectopically expressed in Nicotiana tabacum, where SvTDC1 (Sevir.6G066200) had tryptophan decarboxylase activity, and SvT5H1 (Sevir.8G219600) had tryptamine hydroxylase activity. Moreover, the function of the SvTDC1 gene was validated using virus-induced gene silencing in S. italica, which caused a reduction in serotonin levels. This study provides the first evidence of serotonin biosynthesis in Setaria leaves. The biosynthesis of serotonin may play an important role in defense responses and could prove to be useful for developing more pest-tolerant Setaria italica cultivars.


Asunto(s)
Áfidos , Setaria (Planta) , Animales , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Descarboxilasas de Aminoácido-L-Aromático/farmacología , Hojas de la Planta/genética , Serotonina/metabolismo , Serotonina/farmacología , Setaria (Planta)/genética
5.
Plant J ; 104(4): 917-931, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32812296

RESUMEN

Deep insights into chloroplast biogenesis have been obtained by mutant analysis; however, in C4 plants a relevant mutant collection has only been developed and exploited for maize. Here, we report the initial characterization of an ethyl methyl sulfonate-induced mutant population for the C4 model Setaria viridis. Approximately 1000 M2 families were screened for the segregation of pale-green seedlings in the M3 generation, and a subset of these was identified to be deficient in post-transcriptional steps of chloroplast gene expression. Causative mutations were identified for three lines using deep sequencing-based bulked segregant analysis, and in one case confirmed by transgenic complementation. Using chloroplast RNA-sequencing and other molecular assays, we describe phenotypes of mutants deficient in PSRP7, a plastid-specific ribosomal protein, OTP86, an RNA editing factor, and cpPNP, the chloroplast isozyme of polynucleotide phosphorylase. The psrp mutant is globally defective in chloroplast translation, and has varying deficiencies in the accumulation of chloroplast-encoded proteins. The otp86 mutant, like its Arabidopsis counterpart, is specifically defective in editing of the rps14 mRNA; however, the conditional pale-green mutant phenotype contrasts with the normal growth of the Arabidopsis mutant. The pnp mutant exhibited multiple defects in 3' end maturation as well as other qualitative changes in the chloroplast RNA population. Overall, our collection opens the door to global analysis of photosynthesis and early seedling development in an emerging C4 model.


Asunto(s)
Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Arabidopsis/genética , Arabidopsis/fisiología , Cloroplastos/metabolismo , Isoenzimas , Mutación , Fenotipo , Fotosíntesis/genética , Proteínas de Plantas/genética , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Edición de ARN , ARN del Cloroplasto/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ARN , Setaria (Planta)/fisiología
6.
Plant J ; 103(4): 1433-1445, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32391580

RESUMEN

The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide-binding leucine-rich repeat protein (NLR)-encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA-Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.


Asunto(s)
Proteínas Bacterianas/metabolismo , Resistencia a la Enfermedad/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Solanaceae/genética , Solanum/genética , Evolución Molecular , Solanum lycopersicum/genética , Proteínas de Transporte de Membrana/fisiología , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/fisiología , Seudogenes/genética , Seudogenes/fisiología , Ralstonia/genética , Solanaceae/fisiología , Solanum tuberosum/genética , Nicotiana/genética
7.
J Proteome Res ; 19(6): 2247-2263, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32338516

RESUMEN

Presymptomatic detection of citrus trees infected with Candidatus Liberibacter asiaticus (CLas), the bacterial pathogen associated with Huanglongbing (HLB; citrus greening disease), is critical to controlling the spread of the disease. To test whether infected citrus trees produce systemic signals that may be used for indirect disease detection, lemon (Citrus limon) plants were graft-inoculated with either CLas-infected or control (CLas-) budwood, and leaf samples were longitudinally collected over 46 weeks and analyzed for plant changes associated with CLas infection. RNA, protein, and metabolite samples extracted from leaves were analyzed using RNA-Seq, mass spectrometry, and 1H NMR spectroscopy, respectively. Significant differences in specific transcripts, proteins, and metabolites were observed between CLas-infected and control plants as early as 2 weeks post graft (wpg). The most dramatic differences between the transcriptome and proteome of CLas-infected and control plants were observed at 10 wpg, including coordinated increases in transcripts and proteins of citrus orthologs of known plant defense genes. This integrated approach to quantifying plant molecular changes in leaves of CLas-infected plants supports the development of diagnostic technology for presymptomatic or early disease detection as part of efforts to control the spread of HLB into uninfected citrus groves.


Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Liberibacter , Enfermedades de las Plantas/genética , Proteómica , Rhizobiaceae/genética , Transcriptoma
8.
Plant Biotechnol J ; 18(3): 691-706, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31448544

RESUMEN

Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD-associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD-infested Mac7 and validated RNA-Seq data with qPCR on 24 independent genes. We performed co-expression network and pathway analysis for regulation of geminivirus/betasatellite-interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co-expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite-interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus-induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub-genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.


Asunto(s)
Begomovirus , Resistencia a la Enfermedad , Gossypium/genética , Enfermedades de las Plantas/genética , Silenciador del Gen , Genes de Plantas , Gossypium/virología , India , Pakistán , Enfermedades de las Plantas/virología
9.
Plant Physiol ; 179(4): 1315-1329, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30696746

RESUMEN

Defects in the nuclear lamina of animal cell nuclei have dramatic effects on nuclear structure and gene expression as well as diverse physiological manifestations. We report that deficiencies in CROWDED NUCLEI (CRWN), which are candidate nuclear lamina proteins in Arabidopsis (Arabidopsis thaliana), trigger widespread changes in transcript levels and whole-plant phenotypes, including dwarfing and spontaneous cell death lesions. These phenotypes are caused in part by ectopic induction of plant defense responses via the salicylic acid pathway. Loss of CRWN proteins induces the expression of the salicylic acid biosynthetic gene ISOCHORISMATE SYNTHASE1, which leads to spontaneous defense responses in crwn1 crwn2 and crwn1 crwn4 mutants, which are deficient in two of the four CRWN paralogs. The symptoms of ectopic defense response, including pathogenesis marker gene expression and cell death, increase in older crwn double mutants. These age-dependent effects are postulated to reflect an increase in nuclear dysfunction or damage over time, a phenomenon reminiscent of aging effects seen in animal nuclei and in some human laminopathy patients.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transferasas Intramoleculares/metabolismo , Proteínas Nucleares/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Botrytis , Muerte Celular , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Mutación , Proteínas Nucleares/genética , Fenotipo , Pseudomonas syringae
10.
Mol Plant Microbe Interact ; 32(8): 949-960, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30785360

RESUMEN

Race 1 strains of Pseudomonas syringae pv. tomato, which cause bacterial speck disease of tomato, are becoming increasingly common and no simply inherited genetic resistance to such strains is known. We discovered that a locus in Solanum lycopersicoides, termed Pseudomonas tomato race 1 (Ptr1), confers resistance to race 1 P. syringae pv. tomato strains by detecting the activity of type III effector AvrRpt2. In Arabidopsis, AvrRpt2 degrades the RIN4 protein, thereby activating RPS2-mediated immunity. Using site-directed mutagenesis of AvrRpt2, we found that, like RPS2, activation of Ptr1 requires AvrRpt2 proteolytic activity. Ptr1 also detected the activity of AvrRpt2 homologs from diverse bacteria, including one in Ralstonia pseudosolanacearum. The genome sequence of S. lycopersicoides revealed no RPS2 homolog in the Ptr1 region. Ptr1 could play an important role in controlling bacterial speck disease and its future cloning may shed light on an example of convergent evolution for recognition of a widespread type III effector.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de Transporte de Membrana , Pseudomonas syringae , Ralstonia , Solanum , Proteínas Bacterianas/metabolismo , Resistencia a la Enfermedad/genética , Genoma Bacteriano/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pseudomonas syringae/clasificación , Pseudomonas syringae/fisiología , Ralstonia/clasificación , Ralstonia/fisiología , Solanum/genética , Solanum/microbiología
11.
New Phytol ; 223(1): 447-461, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30861136

RESUMEN

The interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well-developed model for investigating the molecular basis of the plant immune system. There is extensive natural variation in Solanum lycopersicum (tomato) but it has not been fully leveraged to enhance our understanding of the tomato-Pst pathosystem. We screened 216 genetically diverse accessions of cultivated tomato and a wild tomato species for natural variation in their response to three strains of Pst. The host response to Pst was investigated using multiple Pst strains, tomato accessions with available genome sequences, reactive oxygen species (ROS) assays, reporter genes and bacterial population measurements. The screen uncovered a broad range of previously unseen host symptoms in response to Pst, and one of these, stem galls, was found to be simply inherited. The screen also identified tomato accessions that showed enhanced responses to flagellin in bacterial population assays and in ROS assays upon exposure to flagellin-derived peptides, flg22 and flgII-28. Reporter genes confirmed that the host responses were due primarily to pattern recognition receptor-triggered immunity. This study revealed extensive natural variation in tomato for susceptibility and resistance to Pst and will enable elucidation of the molecular mechanisms underlying these host responses.


Asunto(s)
Ecotipo , Flagelina/metabolismo , Variación Genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad de la Planta , Pseudomonas syringae/fisiología , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Resistencia a la Enfermedad , Genes Reporteros , Patrón de Herencia/genética , Solanum lycopersicum/genética , Mutación/genética , Péptidos/metabolismo , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/fisiología , Tumores de Planta/microbiología , Carácter Cuantitativo Heredable , Especies Reactivas de Oxígeno/metabolismo
12.
Plant Cell ; 27(4): 1265-78, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25901084

RESUMEN

Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-ß-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with ß-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated ß-tyrosine production in Nipponbare. Rice cultivars that do not produce ß-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although ß-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant ß-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 µM. As ß-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice.


Asunto(s)
Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tirosina/biosíntesis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
13.
J Exp Bot ; 68(16): 4709-4723, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28981781

RESUMEN

Insects such as the beet armyworm (Spodoptera exigua) cause extensive damage to maize (Zea mays). Maize plants respond by triggering defense signaling, changes in gene expression, and biosynthesis of specialized metabolites. Leaves of maize inbred line B73, which has an available genome sequence, were infested with S. exigua for 1 to 24 h, followed by comparisons of the transcript and metabolite profiles with those of uninfested controls. The most extensive gene expression responses occurred rapidly, within 4-6 h after caterpillar infestation. However, both gene expression and metabolite profiles were altered within 1 h and continued to change during the entire 24 h experiment. The defensive functions of three caterpillar-induced genes were examined using available Dissociation transposon insertions in maize inbred line W22. Whereas mutations in the benzoxazinoid biosynthesis pathway (Bx1 and Bx2) significantly improved caterpillar growth, the knockout of a 13-lipoxygenase (Lox8) involved in jasmonic acid biosynthesis did not. Interestingly, 9-lipoxygenases, which lead to the production of maize death acids, were more strongly induced by caterpillar feeding than 13-lipoxygenases, suggesting an as yet unknown function in maize defense against herbivory. Together, these results provide a comprehensive view of the dynamic transcriptomic and metabolomic responses of maize leaves to caterpillar feeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Spodoptera/fisiología , Zea mays/fisiología , Animales , Benzoxazinas/metabolismo , Ciclopentanos/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Herbivoria , Mutación , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Zea mays/genética
14.
Nucleic Acids Res ; 43(Database issue): D1036-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25428362

RESUMEN

The Sol Genomics Network (SGN, http://solgenomics.net) is a web portal with genomic and phenotypic data, and analysis tools for the Solanaceae family and close relatives. SGN hosts whole genome data for an increasing number of Solanaceae family members including tomato, potato, pepper, eggplant, tobacco and Nicotiana benthamiana. The database also stores loci and phenotype data, which researchers can upload and edit with user-friendly web interfaces. Tools such as BLAST, GBrowse and JBrowse for browsing genomes, expression and map data viewers, a locus community annotation system and a QTL analysis tools are available. A new tool was recently implemented to improve Virus-Induced Gene Silencing (VIGS) constructs called the SGN VIGS tool. With the growing genomic and phenotypic data in the database, SGN is now advancing to develop new web-based breeding tools and implement the code and database structure for other species or clade-specific databases.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma de Planta , Solanaceae/genética , Cruzamiento , Cruzamientos Genéticos , Genómica , Genotipo , Internet , Fenotipo , Solanaceae/metabolismo
15.
J Mol Evol ; 83(1-2): 26-37, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27364496

RESUMEN

MYB transcription factors play an important role in regulating key plant developmental processes involving defense, cell shape, pigmentation, and root formation. Within this gene family, sequences containing an R2R3 MYB domain are the most abundant type and exhibit a wide diversity of functions. In this study, we identify 559 R2R3 MYB genes using whole genome data from four species of Solanaceae and reconstruct their evolutionary relationships. We compare the Solanaceae R2R3 MYBs to the well-characterized Arabidopsis thaliana sequences to estimate functional diversity and to identify gains and losses of MYB clades in the Solanaceae. We identify numerous R2R3 MYBs that do not appear closely related to Arabidopsis MYBs, and thus may represent clades of genes that have been lost along the Arabidopsis lineage or gained after the divergence of Rosid and Asterid lineages. Despite differences in the distribution of R2R3 MYBs across functional subgroups and species, the overall size of the R2R3 subfamily has changed relatively little over the roughly 50 million-year history of Solanaceae. We added our information regarding R2R3 MYBs in Solanaceae to other data and performed a meta-analysis to trace the evolution of subfamily size across land plants. The results reveal many shifts in the number of R2R3 genes, including a 54 % increase along the angiosperm stem lineage. The variation in R2R3 subfamily size across land plants is weakly positively correlated with genome size and strongly positively correlated with total number of genes. The retention of such a large number of R2R3 copies over long evolutionary time periods suggests that they have acquired new functions and been maintained by selection. Discovering the nature of this functional diversity will require integrating forward and reverse genetic approaches on an -omics scale.


Asunto(s)
Solanum lycopersicum/genética , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia Conservada , Evolución Molecular , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo
16.
Planta ; 241(1): 179-91, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25249475

RESUMEN

Caffeine is a metabolite of great economic importance, especially in coffee, where it influences the sensorial and physiological impacts of the beverage. Caffeine metabolism in the Coffea species begins with the degradation of purine nucleotides through three specific N-methyltransferases: XMT, MXMT and DXMT. A comparative analysis was performed to clarify the molecular reasons behind differences in caffeine accumulation in two Coffea species, namely Coffea arabica and Coffea canephora var. robusta. Three different genes encoding N-methyltransferase were amplified in the doubled haploid Coffea canephora: CcXMT1, CcMXMT1 and CcDXMT. Six genes were amplified in the haploid Coffea arabica: CaXMT1, CaXMT2, CaMXMT1, CaMXMT2, CaDXMT1, and CaDXMT2. A complete phylogenic analysis was performed to identify specific key amino acids defining enzymatic function for each protein identified. Furthermore, a quantitative gene-expression analysis was conducted on leaves and on maturing coffee beans, simultaneously analyzing caffeine content. In the different varieties analyzed, caffeine accumulation is higher in leaves than in the coffee bean maturation period, higher in Robusta than in Arabica. In Robusta, CcXMT1 and CcDXMT gene expressions are predominant and transcriptional activity is higher in leaves than in maturing beans, and is highly correlated to caffeine accumulation. In Arabica, the CaXMT1 expression level is high in leaves and CaDXMT2 as well to a lesser extent, while global transcriptional activity is weak during bean maturation, suggesting that the transcriptional control of caffeine-related genes differs within different organs and between Arabica and Robusta. These findings indicate that caffeine accumulation in Coffea species has been modulated by a combination of differential transcriptional regulation and genome evolution.


Asunto(s)
Cafeína/metabolismo , Coffea/metabolismo , Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Coffea/clasificación , Coffea/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Haploidia , Metiltransferasas/clasificación , Metiltransferasas/genética , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Teobromina/metabolismo
17.
Mol Plant Microbe Interact ; 27(1): 7-17, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24047240

RESUMEN

Protein kinase-driven phosphorylation constitutes the core of cellular signaling. Kinase components of signal transduction pathways are often targeted for inactivation by pathogens. The study of kinases and immune signal transduction in the model crop tomato (Solanum lycopersicum) would benefit from the availability of community-wide resources for large scale and systems-level experimentation. Here, we defined the tomato kinome and performed a comprehensive comparative analysis of the tomato kinome and 15 other plant species. We constructed a tomato kinase library (TOKN 1.0) of over 300 full-length open reading frames (ORF) cloned into a recombination-based vector. We developed a high-throughput pipeline to isolate and transform tomato protoplasts. A subset of the TOKN 1.0 library kinases were expressed in planta, were purified, and were used to generate a functional tomato protein microarray. All resources created were utilized to test known and novel associations between tomato kinases and Pseudomonas syringae DC3000 effectors in a large-scale format. Bsk7 was identified as a component of the plant immune response and a candidate effector target. These resources will enable comprehensive investigations of signaling pathways and host-pathogen interactions in tomato and other Solanaceae spp.


Asunto(s)
Enfermedades de las Plantas/inmunología , Proteínas Quinasas/metabolismo , Pseudomonas syringae/metabolismo , Transducción de Señal , Solanaceae/fisiología , Solanum lycopersicum/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional , Biblioteca de Genes , Prueba de Complementación Genética , Interacciones Huésped-Patógeno , Luciferasas , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Sistemas de Lectura Abierta , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis por Matrices de Proteínas , Proteínas Quinasas/genética , Protoplastos , Pseudomonas syringae/genética , Solanaceae/enzimología , Solanaceae/genética , Solanaceae/inmunología
18.
BMC Plant Biol ; 14: 287, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25348801

RESUMEN

BACKGROUND: Decades of intensive tomato breeding using wild-species germplasm have resulted in the genomes of domesticated germplasm (Solanum lycopersicum) being intertwined with introgressions from their wild relatives. Comparative analysis of genomes among cultivated tomatoes and wild species that have contributed genetic variation can help identify desirable genes, such as those conferring disease resistance. The ability to identify introgression position, borders, and contents can reveal ancestral origins and facilitate harnessing of wild variation in crop breeding. RESULTS: Here we present the whole-genome sequences of two tomato inbreds, Gh13 and BTI-87, both carrying the begomovirus resistance locus Ty-3 introgressed from wild tomato species. Introgressions of different sizes on chromosome 6 of Gh13 and BTI-87, both corresponding to the Ty-3 region, were identified as from a source close to the wild species S. chilense. Other introgressions were identified throughout the genomes of the inbreds and showed major differences in the breeding pedigrees of the two lines. Interestingly, additional large introgressions from the close tomato relative S. pimpinellifolium were identified in both lines. Some of the polymorphic regions were attributed to introgressions in the reference Heinz 1706 genome, indicating wild genome sequences in the reference tomato genome. CONCLUSIONS: The methods developed in this work can be used to delineate genome introgressions, and subsequently contribute to development of molecular markers to aid phenotypic selection, fine mapping and discovery of candidate genes for important phenotypes, and for identification of novel variation for tomato improvement. These universal methods can easily be applied to other crop plants.


Asunto(s)
Begomovirus/genética , Variación Genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Solanum/genética , Secuencia de Bases , Mapeo Cromosómico , Resistencia a la Enfermedad , Genotipo , Endogamia , Solanum lycopersicum/inmunología , Solanum lycopersicum/virología , Datos de Secuencia Molecular , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Solanum/inmunología , Solanum/virología
19.
Genome ; 57(3): 169-80, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24884691

RESUMEN

The most diverse wild tomato species Solanum peruvianum sensu lato (s.l.) has been reclassified into four separate species: Solanum peruvianum sensu stricto (s.s.), Solanum corneliomuelleri, Solanum huaylasense, and Solanum arcanum. However, reproductive barriers among the species are incomplete and this can lead to discrepancies regarding genetic identity of germplasm. We used genotyping by sequencing (GBS) of S. peruvianum s.l., Solanum neorickii, and Solanum chmielewskii to develop tens of thousands of mapped single nucleotide polymorphisms (SNPs) to analyze genetic relationships within and among species. The data set was condensed to 14,043 SNPs with no missing data across 46 sampled plants. Origins of accessions were mapped using geographical information systems (GIS). Isolation by distance, pairwise genetic distances, and number of clusters were estimated using population genetics approaches. Isolation by distance was strongly supported, especially between interspecific pairs. Eriopersicon (S. peruvianum s.s., S. corneliomuelleri, S. huaylasense) and Arcanum (S. arcanum, S. neorickii, S. chmielewskii) species groups were genetically distinct, except for S. huaylasense which showed 50% membership proportions in each group. Solanum peruvianum and S. corneliomuelleri were not significantly differentiated from each other. Many thousands of SNP markers were identified that could potentially be used to distinguish pairs of species, including S. peruvianum versus S. corneliomuelleri, if they are verified on larger numbers of samples. Diagnostic markers will be valuable for delimiting morphologically similar and interfertile species in germplasm management. Approximately 12% of the SNPs rejected a genome-wide test of selective neutrality based on differentiation among species of S. peruvianum s.l. These are candidates for more comprehensive studies of microevolutionary processes within this species complex.


Asunto(s)
Especiación Genética , Genoma de Planta , Polimorfismo de Nucleótido Simple , Solanum/genética , Filogenia , Filogeografía , Aislamiento Reproductivo , Selección Genética , Solanum/clasificación
20.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293015

RESUMEN

Plants in the genus Erysimum produce both glucosinolates and cardiac glycosides as defense against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardiac glycoside content, and resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not induced further by aphid feeding. To investigate the relative importance of glucosinolates and cardiac glycosides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. Genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci affecting glucosinolates and cardiac glycosides, but not aphid resistance. The abundance of most glucosinolates and cardiac glycosides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although overall cardiac glycoside content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardiac glycosides have a predominant effect on aphid resistance in E. cheiranthoides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA