Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Nitric Oxide ; 86: 63-67, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30836135

RESUMEN

OBJECTIVE: This study evaluated in obese rats the effect of exercise training on eNOS expressed in perivascular adipose tissue (PVAT) and its consequences on vascular function. METHODS: Wistar rats were divided in 3 groups: control (standard diet), obese (high fat/high sucrose diet, HFS for 15 weeks), and exercised obese (HFS diet and exercise from week 6 to week 15, HFS-Ex) rats. The eNOS-adiponectin pathway and reactive oxygen species (ROS) were evaluated. Vascular reactivity was assessed on isolated aortic rings with or without PVAT and/or endothelium and exposed or not to the conditioned media of PVAT. RESULTS: Obesity reduced eNOS level and phosphorylation on its activation site in the PVAT and had no impact on the vascular wall. Exercise training was able to increase eNOS and P-eNOS both in the vascular wall and in the PVAT. Interestingly, this was associated with increased level of adiponectin in the PVAT and to lower ROS in the vascular wall. Finally, PVAT of HFS-Ex aorta has eNOS-dependent anticontractile effects on endothelium denuded aortic rings and has beneficial effects on the endothelium-dependent vasorelaxation to ACh. CONCLUSION: Exercise training in obese rats is able to impact PVAT eNOS with subsequent beneficial impact on vascular function.


Asunto(s)
Tejido Adiposo/metabolismo , Endotelio Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/metabolismo , Adiponectina/metabolismo , Animales , Aorta/metabolismo , Dieta de Carga de Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Activación Enzimática/fisiología , Masculino , Óxido Nítrico Sintasa de Tipo III/química , Obesidad/prevención & control , Fosforilación/fisiología , Condicionamiento Físico Animal , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
3.
Nat Commun ; 14(1): 4290, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463962

RESUMEN

Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons. iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the pericentriolar organelles cloud of LPS-activated macrophages. We show that iRUFY3 controls macrophages migration, MHC II presentation and responses to Interferon-γ, while being important for intracellular Salmonella replication. Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in mouse upon LPS injection or bacterial pneumonia. This study highlights the role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to phagocyte activation and immune response regulation.


Asunto(s)
Presentación de Antígeno , Lipopolisacáridos , Animales , Ratones , Endosomas/metabolismo , Lipopolisacáridos/metabolismo , Lisosomas/metabolismo , Fagocitos
4.
R Soc Open Sci ; 8(7): 202333, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34295519

RESUMEN

We report here that RUFY4, a newly characterized member of the 'RUN and FYVE domain-containing' family of proteins previously associated with autophagy enhancement, is highly expressed in alveolar macrophages (AM). We show that RUFY4 interacts with mitochondria upon stimulation by microbial-associated molecular patterns of AM and dendritic cells. RUFY4 interaction with mitochondria and other organelles is dependent on a previously uncharacterized OmpH domain located immediately upstream of its C-terminal FYVE domain. Further, we demonstrate that rufy4 messenger RNA can be translated from an alternative translation initiation codon, giving rise to a N-terminally truncated form of the molecule lacking most of its RUN domain and with enhanced potential for its interaction with mitochondria. Our observations point towards a role of RUFY4 in selective mitochondria clearance in activated phagocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA