Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Genet ; 19(6): e1010796, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37315079

RESUMEN

Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice.


Asunto(s)
Cilios , Ciliopatías , Humanos , Animales , Ratones , Cilios/genética , Cilios/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas/genética , Aminoácidos/metabolismo , Mamíferos/metabolismo , Proteínas del Citoesqueleto/genética
2.
Hum Mol Genet ; 28(3): 459-475, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307502

RESUMEN

The retinal disease gene peripherin 2 (PRPH2) is essential for the formation of photoreceptor outer segments (OSs), where it functions in oligomers with and without its homologue ROM1. However, the precise role of these proteins in OS morphogenesis is not understood. By utilizing a knock-in mouse expressing a chimeric protein comprised of the body of Rom1 and the C-terminus of Prph2 (termed RRCT), we find that the Prph2 C-terminus is necessary and sufficient for the initiation of OSs, while OS maturation requires the body of Prph2 and associated large oligomers. Importantly, dominant-negative physiological and biochemical defects in RRCT heterozygous rods are rescued by removing Rom1, suggesting Rom1 is a regulator for OS formation. Our experiments evaluating Prph2 trafficking show that Rom1 is a key determinant of whether Prph2 complexes utilize conventional versus unconventional (Golgi bypass) secretory pathways to reach the OS. These findings significantly advance our understanding of the molecular underpinnings of OS morphogenesis and particularly the role of Rom1.


Asunto(s)
Proteínas del Ojo/fisiología , Proteínas de la Membrana/fisiología , Periferinas/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Técnicas de Sustitución del Gen/métodos , Heterocigoto , Masculino , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Mutación , Proteínas del Tejido Nervioso/genética , Periferinas/genética , Periferinas/metabolismo , Fenotipo , Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Tetraspaninas
3.
PLoS Genet ; 13(4): e1006740, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28410364

RESUMEN

Arf4 is proposed to be a critical regulator of membrane protein trafficking in early secretory pathway. More recently, Arf4 was also implicated in regulating ciliary trafficking, however, this has not been comprehensively tested in vivo. To directly address Arf4's role in ciliary transport, we deleted Arf4 specifically in either rod photoreceptor cells, kidney, or globally during the early postnatal period. Arf4 deletion in photoreceptors did not cause protein mislocalization or retinal degeneration, as expected if Arf4 played a role in protein transport to the ciliary outer segment. Likewise, Arf4 deletion in kidney did not cause cystic disease, as expected if Arf4 were involved in general ciliary trafficking. In contrast, global Arf4 deletion in the early postnatal period resulted in growth restriction, severe pancreatic degeneration and early death. These findings are consistent with Arf4 playing a critical role in endomembrane trafficking, particularly in the pancreas, but not in ciliary function.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Enfermedades Renales Quísticas/genética , Páncreas Exocrino/patología , Degeneración Retiniana/genética , Animales , Cilios/genética , Cilios/patología , Modelos Animales de Enfermedad , Humanos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales Quísticas/patología , Ratones , Ratones Noqueados , Motivos de Nucleótidos/genética , Páncreas Exocrino/crecimiento & desarrollo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Degeneración Retiniana/patología , Eliminación de Secuencia
4.
Hum Mol Genet ; 26(3): 509-518, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28053051

RESUMEN

Mutations in peripherin 2 (PRPH2), also known as retinal degeneration slow/RDS, lead to various retinal degenerations including retinitis pigmentosa (RP) and macular/pattern dystrophy (MD/PD). PRPH2-associated disease is often characterized by a phenotypic variability even within families carrying the same mutation, raising interest in potential modifiers. PRPH2 oligomerizes with its homologue rod outer segment (OS) membrane protein 1 (ROM1), and non-pathogenic PRPH2/ROM1 mutations, when present together, lead to digenic RP. We asked whether ROM1 could modify the phenotype of a PRPH2 mutation associated with a high degree of intrafamilial phenotypic heterogeneity: Y141C. In vitro, Y141C-Prph2 showed signs of retention in the endoplasmic reticulum (ER), however co-expression with Rom1 rescued this phenotype. In the heterozygous Y141C knockin mouse model (Prph2Y/+), Y141C-Prph2 and Rom1 formed abnormal complexes but were present at normal levels. Abnormal complexes were eliminated in the absence of Rom1 (Prph2Y/+/Rom1-/-) and total Prph2 levels were reduced to those found in the haploinsufficient Prph2+/- RP model. The biochemical changes had functional and structural consequences; while Prph2Y/+ animals exhibited a cone-rod electroretinogram defect, Prph2Y/+/Rom1-/- animals displayed a rod-dominant phenotype and OSs similar to those seen in the Prph2+/-. These data show that ablation of Rom1 results in the conversion of an MD/PD phenotype characterized by cone functional defects and the formation of abnormal Prph2/Rom1 complexes to an RP phenotype characterized by rod-dominant functional defects and reductions in total Prph2 protein. Thus one method by which ROM1 may act as a disease modifier is by contributing to the large variability in PRPH2-associated disease phenotypes.


Asunto(s)
Periferinas/genética , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Tetraspaninas/genética , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Proteínas del Ojo , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Ratones , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Linaje , Periferinas/biosíntesis , Periferinas/química , Fenotipo , Células Fotorreceptoras de Vertebrados/química , Células Fotorreceptoras de Vertebrados/metabolismo , Multimerización de Proteína , Degeneración Retiniana/patología , Retinitis Pigmentosa/patología , Tetraspaninas/biosíntesis , Tetraspaninas/química
5.
J Biol Chem ; 290(46): 27901-13, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26420485

RESUMEN

The photoreceptor-specific glycoprotein retinal degeneration slow (RDS, also called PRPH2) is necessary for the formation of rod and cone outer segments. Mutations in RDS cause rod and cone-dominant retinal disease, and it is well established that both cell types have different requirements for RDS. However, the molecular mechanisms for this difference remain unclear. Although RDS glycosylation is highly conserved, previous studies have revealed no apparent function for the glycan in rods. In light of the highly conserved nature of RDS glycosylation, we hypothesized that it is important for RDS function in cones and could underlie part of the differential requirement for RDS in the two photoreceptor subtypes. We generated a knockin mouse expressing RDS without the N-glycosylation site (N229S). Normal levels of RDS and the unglycosylated RDS binding partner rod outer segment membrane protein 1 (ROM-1) were found in N229S retinas. However, cone electroretinogram responses were decreased by 40% at 6 months of age. Because cones make up only 3-5% of photoreceptors in the wild-type background, N229S mice were crossed into the nrl(-/-) background (in which all rods are converted to cone-like cells) for biochemical analysis. In N229S/nrl(-/-) retinas, RDS and ROM-1 levels were decreased by ~60% each. These data suggest that glycosylation of RDS is required for RDS function or stability in cones, a difference that may be due to extracellular versus intradiscal localization of the RDS glycan in cones versus rods.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Periferinas/metabolismo , Procesamiento Proteico-Postraduccional , Células Fotorreceptoras Retinianas Conos/fisiología , Animales , Técnicas de Sustitución del Gen , Glicosilación , Ratones , Ratones Mutantes , Complejos Multiproteicos/metabolismo , Mutación , Periferinas/genética , Multimerización de Proteína , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Tetraspaninas
6.
Hum Mol Genet ; 23(23): 6260-74, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25001182

RESUMEN

Mutations in the photoreceptor-specific gene peripherin-2 (PRPH-2, also known as retinal degeneration slow/RDS) cause incurable retinal degeneration with a high degree of phenotypic variability. Patient phenotypes range from retinitis pigmentosa to various forms of macular and pattern dystrophy. Macular and pattern dystrophy in particular are associated with complex, poorly understood disease mechanisms, as severe vision loss is often associated both with defects in the photoreceptors, as well as the choroid and retinal pigment epithelium (RPE). Since there is currently no satisfactory model to study pattern dystrophy disease mechanisms, we generated a knockin mouse model expressing an RDS pattern dystrophy mutation, Y141C. Y141C mice exhibited clinical signs similar to those in patients including late-onset fundus abnormalities characteristic of RPE and choroidal defects and electroretinogram defects. Ultrastructural examination indicated that disc formation was initiated by the Y141C protein, but proper sizing and alignment of discs required wild-type RDS. The biochemical mechanism underlying these abnormalities was tied to defects in the normal process of RDS oligomerization which is required for proper RDS function. Y141C-RDS formed strikingly abnormal disulfide-linked complexes which were localized to the outer segment (OS) where they impaired the formation of proper OS structure. These data support a model of pattern dystrophy wherein a primary molecular defect occurring in all photoreceptors leads to secondary sequellae in adjacent tissues, an outcome which leads to macular vision loss. An understanding of the role of RDS in the interplay between these tissues significantly enhances our understanding of RDS-associated pathobiology and our ability to design rational treatment strategies.


Asunto(s)
Periferinas/genética , Degeneración Retiniana/genética , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Técnicas de Sustitución del Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Periferinas/metabolismo , Fenotipo , Retina/patología , Retina/fisiopatología , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/fisiopatología , Tetraspaninas
7.
Hum Mol Genet ; 23(12): 3102-14, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24463884

RESUMEN

Mutations in the photoreceptor tetraspanin gene peripherin-2/retinal degeneration slow (PRPH2/RDS) cause both rod- and cone-dominant diseases. While rod-dominant diseases, such as autosomal dominant retinitis pigmentosa, are thought to arise due to haploinsufficiency caused by loss-of-function mutations, the mechanisms underlying PRPH2-associated cone-dominant diseases are unclear. Here we took advantage of a transgenic mouse line expressing an RDS mutant (R172W) known to cause macular degeneration (MD) in humans. To facilitate the study of cones in the heavily rod-dominant mouse retina, R172W mice were bred onto an Nrl(-/-) background (in which developing rods adopt a cone-like fate). In this model the R172W protein and the key RDS-binding partner, rod outer segment (OS) membrane protein 1 (ROM-1), were properly expressed and trafficked to cone OSs. However, the expression of R172W led to dominant defects in cone structure and function with equal effects on S- and M-cones. Furthermore, the expression of R172W in cones induced subtle alterations in RDS/ROM-1 complex assembly, specifically resulting in the formation of abnormal, large molecular weight ROM-1 complexes. Fundus imaging demonstrated that R172W mice developed severe clinical signs of disease nearly identical to those seen in human MD patients, including retinal degeneration, retinal pigment epithlium (RPE) defects and loss of the choriocapillaris. Collectively, these data identify a primary disease-causing molecular defect in cone cells and suggest that RDS-associated disease in patients may be a result of this defect coupled with secondary sequellae involving RPE and choriocapillaris cell loss.


Asunto(s)
Sustitución de Aminoácidos , Proteínas del Ojo/metabolismo , Degeneración Macular/patología , Proteínas de la Membrana/metabolismo , Periferinas/genética , Periferinas/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Animales , Arginina/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Fondo de Ojo , Humanos , Degeneración Macular/genética , Ratones , Ratones Transgénicos , Células Fotorreceptoras Retinianas Conos/metabolismo , Tetraspaninas , Triptófano/metabolismo
8.
Adv Exp Med Biol ; 854: 217-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26427414

RESUMEN

The photoreceptor specific tetraspanin protein retina degeneration slow (RDS) is a critical component of the machinery necessary for the formation of rod and cone outer segments. Over 80 individual pathogenic mutations in RDS have been identified in human patients that lead to a wide variety of retinal degenerative diseases including retinitis pigmentosa, cone-rod dystrophy, and various forms of macular dystrophy. RDS-associated disease is characterized by a high degree of variability in phenotype and penetrance, making analysis of the underlying molecular mechanisms of interest difficult. Here we summarize our modern understanding of RDS functional domains and oligomerization and how disruption of these domains and complexes could contribute to the variety of disease pathologies seen in human patients with RDS mutations.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Degeneración Macular/genética , Mutación , Periferinas/genética , Retinitis Pigmentosa/genética , Animales , Humanos , Periferinas/química , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Multimerización de Proteína , Estructura Terciaria de Proteína
9.
Adv Exp Med Biol ; 801: 67-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664682

RESUMEN

Many monogenic retinal diseases target the human macula, and evaluating genetic treatments for these diseases in rodent models which lack a macula can be limiting. To better test the likelihood that novel treatments will be relevant to patients, assessing expression and distribution may be undertaken in a nonhuman primate (NHP) model. The purpose of this study was to establish baseline functional characteristics in the baboon (Papio anubis) eye to establish a control dataset for future experiments testing novel genetic therapies. Electroretinography (ERG) was conducted on 12 young (~ 3 years of age) dark-adapted baboons. Scotopic responses were measured in response to a series of light intensities followed by a 10-min period of light adaptation after which photopic responses were measured following the same series of light intensities. At the highest flash intensity, scotopic amplitudes were 334 ± 10 µV and 458 ± 15 µV for a- and b-waves, respectively. At the highest flash intensity, photopic amplitudes were 82 ± 5 µV and 81 ± 4 µV for a- and b-waves, respectively. Waveforms for scotopic responses were similar in shape to rodent scotopic responses. In contrast, photopic baboon waveforms were quite different in shape from those of rodents and were more similar to waveforms recorded from humans or other NHPs. These results are consistent with the differences in the photopic visual system in rodents versus primates (presence of a macula) and provide an excellent baseline for future studies testing novel therapies in the baboon model.


Asunto(s)
Visión de Colores/fisiología , Adaptación a la Oscuridad/fisiología , Electrorretinografía/métodos , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Humanos , Modelos Animales , Papio anubis , Estimulación Luminosa
10.
Cell Mol Life Sci ; 69(7): 1035-47, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21655915

RESUMEN

The two primary photoreceptor-specific tetraspanins are retinal degeneration slow (RDS) and rod outer segment membrane protein-1 (ROM-1). These proteins associate together to form different complexes necessary for the proper structure of the photoreceptor outer segment rim region. Mutations in RDS cause blinding retinal degenerative disease in both rods and cones by mechanisms that remain unknown. Tetraspanins are implicated in a variety of cellular processes and exert their function via the formation of tetraspanin-enriched microdomains. This review focuses on correlations between RDS and other members of the tetraspanin superfamily, particularly emphasizing protein structure, complex assembly, and post-translational modifications, with the goal of furthering our understanding of the structural and functional role of RDS and ROM-1 in outer segment morphogenesis and maintenance, and our understanding of the pathogenesis associated with RDS and ROM-1 mutations.


Asunto(s)
Células Fotorreceptoras/metabolismo , Tetraspaninas/metabolismo , Animales , Humanos , Células Fotorreceptoras/química , Filogenia , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Tetraspaninas/química , Tetraspaninas/genética
11.
medRxiv ; 2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36865301

RESUMEN

Motile and non-motile cilia are critical to mammalian development and health. Assembly of these organelles depends on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). A series of human and mouse IFT74 variants were studied to understand the function of this IFT subunit. Humans missing exon 2, which codes for the first 40 residues, presented an unusual combination of ciliary chondrodysplasia and mucociliary clearance disorders while individuals carrying biallelic splice site variants developed a lethal skeletal chondrodysplasia. In mice, variants thought to remove all Ift74 function, completely block ciliary assembly and result in midgestational lethality. A mouse allele that removes the first 40 amino acids, analogous to the human exon 2 deletion, results in a motile cilia phenotype with mild skeletal abnormalities. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia could account for the motile cilia phenotype observed in human and mice.

12.
Hum Mol Genet ; 19(24): 4799-812, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20858597

RESUMEN

Cysteine 150 of retinal degeneration slow protein (RDS) mediates the intermolecular disulfide bonding necessary for large RDS complex assembly and morphogenesis of the rim region of photoreceptor outer segments. Previously, we showed that cones have a different requirement for RDS than rods, but the nature of that difference was unclear. Here, we express oligomerization-incompetent RDS (C150S-RDS) in the cone-dominant nrl(-/-) mouse. Expression of C150S-RDS leads to dominant functional abnormalities, ultrastructural changes, biochemical anomalies and protein mislocalization in cones. These data suggest that RDS complexes in cones are more susceptible to disruption than those in rods, possibly due to structural or microenvironmental differences in the two cell types. Furthermore, our results suggest that RDS intermolecular disulfide bonding may be part of RDS inner-segment assembly in cones but not in rods. These data highlight significant differences in assembly, trafficking and function of RDS in rods versus cones.


Asunto(s)
Sustitución de Aminoácidos/genética , Proteínas de Filamentos Intermediarios/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Proteínas del Ojo/metabolismo , Genes Dominantes/genética , Proteínas de Filamentos Intermediarios/química , Proteínas de Filamentos Intermediarios/genética , Fototransducción , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Opsinas/metabolismo , Periferinas , Transporte de Proteínas , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Segmento Externo de la Célula en Bastón/patología , Segmento Externo de la Célula en Bastón/ultraestructura , Tetraspaninas , Transgenes/genética
13.
Curr Biol ; 31(13): 2887-2894.e4, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33989524

RESUMEN

Primary cilia are sensory organelles present on most vertebrate cells and are critical for development and health. Ciliary dysfunction is associated with a large class of human pathologies collectively known as ciliopathies. These include cystic kidneys, blindness, obesity, skeletal malformations, and other organ anomalies. Using a proximity biotinylation with Ift27 as bait, we identified the small guanosine triphosphatase (GTPase) Rab34 as a ciliary protein. Rab34 localizes to the centrosomes near the mother centriole, the axoneme of developed cilia, and highly dynamic tubule structures in the centrosomal region. Rab34 is required for cilia formation in fibroblasts, where we find that Rab34 loss blocks ciliogenesis at an early step of ciliary vesicle formation. In inner medullary collecting duct (IMCD3) epithelial cells, the requirement is more complex, with Rab34 needed in cells grown at low density but becoming less important as cell density increases. Ciliogenesis can proceed by an internal pathway where cilia form in the cytoplasm before being displayed on the ciliary surface or cilia can assemble by an external pathway where the centriole docks on the plasma membrane before ciliary assembly. Fibroblasts are thought to use the internal pathway, although IMCD3 cells are thought to use the external pathway. However, we find that IMCD3 cells can use the internal assembly pathway and significant numbers of internally assembling cilia are observed in low-density cells. Together, our work indicates that Rab34 is required for internal assembly of cilia, but not for cilia built on the cell surface.


Asunto(s)
Cilios/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Axonema/metabolismo , Línea Celular , Centriolos/metabolismo , Centrosoma/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones
14.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34161574

RESUMEN

The Hedgehog pathway, critical to vertebrate development, is organized in primary cilia. Activation of signaling causes the Hedgehog receptor Ptch1 to exit cilia, allowing a second receptor, Smo, to accumulate in cilia and activate the downstream steps of the pathway. Mechanisms regulating the dynamics of these receptors are unknown, but the ubiquitination of Smo regulates its interaction with the intraflagellar transport system to control ciliary levels. A focused screen of ubiquitin-related genes identified nine required for maintaining low ciliary Smo at the basal state. These included cytoplasmic E3s (Arih2, Mgrn1, and Maea), a ciliary localized E3 (Wwp1), a ciliary localized E2 (Ube2l3), a deubiquitinase (Bap1), and three adaptors (Kctd5, Skp1a, and Skp2). The ciliary E3, Wwp1, binds Ptch1 and localizes to cilia at the basal state. Activation of signaling removes both Ptch1 and Wwp1 from cilia, thus providing an elegant mechanism for Ptch1 to regulate ciliary Smo levels.


Asunto(s)
Cilios/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Receptor Smoothened/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Transporte Biológico/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Transformada , Cilios/ultraestructura , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Fibroblastos/ultraestructura , Células HEK293 , Humanos , Ratones , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Transporte de Proteínas , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal , Receptor Smoothened/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32435793

RESUMEN

In the absence of Hedgehog ligand, patched-1 (Ptch1) localizes to cilia and prevents ciliary accumulation and activation of smoothened (Smo). Upon ligand binding, Ptch1 is removed from cilia, and Smo is derepressed and accumulates in cilia where it activates signaling. The mechanisms regulating these dynamic movements are not well understood, but defects in intraflagellar transport components, including Ift27 and the BBSome, cause Smo to accumulate in cilia without pathway activation. We find that in the absence of ligand-induced pathway activation, Smo is ubiquitinated and removed from cilia, and this process is dependent on Ift27 and BBSome components. Activation of Hedgehog signaling decreases Smo ubiquitination and ciliary removal, resulting in its accumulation. Blocking ubiquitination of Smo by an E1 ligase inhibitor or by mutating two lysine residues in intracellular loop three causes Smo to aberrantly accumulate in cilia without pathway activation. These data provide a mechanism to control Smo's ciliary level during Hedgehog signaling by regulating the ubiquitination state of the receptor.


Asunto(s)
Cilios/metabolismo , Flagelos/metabolismo , Proteínas Hedgehog/genética , Procesamiento Proteico-Postraduccional , Transducción de Señal , Receptor Smoothened/genética , Ubiquitina/genética , Animales , Transporte Biológico , Línea Celular Transformada , Cilios/ultraestructura , Embrión de Mamíferos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Flagelos/ultraestructura , Proteínas Hedgehog/metabolismo , Ratones , Modelos Moleculares , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Estructura Secundaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Receptor Smoothened/química , Receptor Smoothened/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Ubiquitina/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
16.
Nat Commun ; 10(1): 2864, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253807

RESUMEN

The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune synapse by tethering LAT-vesicles to the Golgi. Finally, in a model of ectopic expression of LAT in ciliated cells, we show that GMAP210 tethering activity controls the delivery of LAT to the cilium. Hence, our results reveal a function for the golgin GMAP210 conveying specific vesicles to the immune synapse.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aparato de Golgi/fisiología , Leucocitos Mononucleares/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Vesículas Transportadoras/fisiología , Línea Celular , Proteínas del Citoesqueleto , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transducción de Señal , Linfocitos T/fisiología
17.
Mech Dev ; 151: 10-17, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626631

RESUMEN

Eukaryotic cilia are assembled by intraflagellar transport (IFT) where large protein complexes called IFT particles move ciliary components from the cell body to the cilium. Defects in most IFT particle proteins disrupt ciliary assembly and cause mid gestational lethality in the mouse. IFT25 and IFT27 are unusual components of IFT-B in that they are not required for ciliary assembly and mutant mice survive to term. The mutants die shortly after birth with numerous organ defects including duplex kidneys. Completely duplex kidneys result from defects in ureteric bud formation at the earliest steps of metanephric kidney development. Ureteric bud initiation is a highly regulated process involving reciprocal signaling between the ureteric epithelium and the overlying metanephric mesenchyme with regulation by the peri-Wolffian duct stroma. The finding of duplex kidney in Ift25 and Ift27 mutants suggests functions for these genes in regulation of ureteric bud initiation. Typically the deletion of IFT genes in the kidney causes rapid cyst growth in the early postnatal period. In contrast, the loss of Ift25 results in smaller kidneys, which show only mild tubule dilations that become apparent in adulthood. The smaller kidneys appear to result from reduced branching in the developing metanephric kidney. This work indicates that IFT25 and IFT27 are important players in the early development of the kidney and suggest that duplex kidney is part of the ciliopathy spectrum.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Renales Quísticas/genética , Riñón/crecimiento & desarrollo , Proteínas de Unión al GTP rab/genética , Animales , Cilios/genética , Cilios/patología , Modelos Animales de Enfermedad , Humanos , Riñón/patología , Enfermedades Renales Quísticas/patología , Ratones , Mutación , Organogénesis/genética , Transducción de Señal/genética , Uréter/crecimiento & desarrollo , Uréter/patología , Conductos Mesonéfricos/crecimiento & desarrollo , Conductos Mesonéfricos/patología
18.
Prog Retin Eye Res ; 52: 47-63, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26773759

RESUMEN

Peripherin 2 (PRPH2), also known as RDS (retinal degeneration slow) is a photoreceptor specific glycoprotein which is essential for normal photoreceptor health and vision. PRPH2/RDS is necessary for the proper formation of both rod and cone photoreceptor outer segments, the organelle specialized for visual transduction. When PRPH2/RDS is defective or absent, outer segments become disorganized or fail to form entirely and the photoreceptors subsequently degenerate. Multiple PRPH2/RDS disease-causing mutations have been found in humans, and they are associated with various blinding diseases of the retina such as macular degeneration and retinitis pigmentosa, the vast majority of which are inherited dominantly, though recessive LCA and digenic RP have also been associated with RDS mutations. Since its initial discovery, the scientific community has dedicated a considerable amount of effort to understanding the molecular function and disease mechanisms of PRPH2/RDS. This work has led to an understanding of how the PRPH2/RDS molecule assembles into complexes and functions as a necessary part of the machinery that forms new outer segment discs, as well as leading to fundamental discoveries about the mechanisms that underlie OS biogenesis. Here we discuss PRPH2/RDS-associated research and how experimental results have driven the understanding of the PRPH2/RDS protein and its role in human disease.


Asunto(s)
Periferinas , Células Fotorreceptoras/metabolismo , Enfermedades de la Retina , Tetraspaninas , Animales , Proteínas del Ojo , Historia del Siglo XX , Humanos , Mutación/genética , Periferinas/genética , Periferinas/historia , Periferinas/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Tetraspaninas/genética , Tetraspaninas/historia , Tetraspaninas/metabolismo
19.
PLoS One ; 10(9): e0138508, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26406599

RESUMEN

Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS). Here we utilize several methods including mass spectrometry after affinity purification, in vitro co-expression followed by pull-down, in vivo pull-down from mouse retinas, and proximity ligation assay to identify and confirm the SNARE proteins Syntaxin 3B and SNAP-25 as novel binding partners of RDS and ROM-1. We show that both covalently linked and non-covalently linked RDS complexes interact with Syntaxin 3B. RDS in the mouse is trafficked from the inner segment to the outer segment by both conventional (i.e., Golgi dependent) and unconventional secretory pathways, and RDS from both pathways interacts with Syntaxin3B. Syntaxin 3B and SNAP-25 are enriched in the inner segment (compared to the outer segment) suggesting that the interaction with RDS/ROM-1 occurs in the inner segment. Syntaxin 3B and SNAP-25 are involved in mediating fusion of vesicles carrying other outer segment proteins during outer segment targeting, so could be involved in the trafficking of RDS/ROM-1.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Periferinas/metabolismo , Proteínas Qa-SNARE/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Aparato de Golgi/metabolismo , Espectrometría de Masas/métodos , Ratones , Proteínas Qa-SNARE/aislamiento & purificación , Transducción de Señal , Proteína 25 Asociada a Sinaptosomas/aislamiento & purificación , Tetraspaninas
20.
PLoS One ; 7(3): e32484, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22427845

RESUMEN

The neural retinal leucine zipper (Nrl) knockout mouse is a widely used model to study cone photoreceptor development, physiology, and molecular biology in the absence of rods. In the Nrl(-/-) retina, rods are converted into functional cone-like cells. The Nrl(-/-) retina is characterized by large undulations of the outer nuclear layer (ONL) commonly known as rosettes. Here we explore the mechanism of rosette development in the Nrl(-/-) retina. We report that rosettes first appear at postnatal day (P)8, and that the structure of nascent rosettes is morphologically distinct from what is seen in the adult retina. The lumen of these nascent rosettes contains a population of aberrant cells protruding into the subretinal space that induce infolding of the ONL. Morphologically adult rosettes do not contain any cell bodies and are first detected at P15. The cells found in nascent rosettes are photoreceptors in origin but lack inner and outer segments. We show that the adherens junctions between photoreceptors and Müller glia which comprise the retinal outer limiting membrane (OLM) are not uniformly formed in the Nrl(-/-) retina and thus allow protrusion of a population of developing photoreceptors into the subretinal space where their maturation becomes delayed. These data suggest that the rosettes of the Nrl(-/-) retina arise due to defects in the OLM and delayed maturation of a subset of photoreceptors, and that rods may play an important role in the proper formation of the OLM.


Asunto(s)
Membranas/citología , Retina/citología , Retina/fisiopatología , Células Fotorreceptoras Retinianas Conos/fisiología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Bromodesoxiuridina , Proteínas del Ojo/genética , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Membranas/crecimiento & desarrollo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Retina/ultraestructura , Células Fotorreceptoras Retinianas Conos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA