Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563301

RESUMEN

Deficient mismatch repair (MMR) proteins may lead to DNA damage and microsatellite instability. Primary sclerosing cholangitis (PSC) is a risk factor for colitis-associated colon cancer. MiR-155 is suggested to act as a key regulating node, linking inflammation and tumorigenesis. However, its involvement in the chronic colitis of PSC-UC patients has not been examined. We investigated the involvement of miR-155 in the dysregulation of MMR genes and colitis in PSC patients. Colon tissue biopsies were obtained from patients with PSC, PSC with concomitant ulcerative colitis (PSC-UC), uncomplicated UC, and healthy controls (n = 10 per group). In the ascending colon of PSC and PSC-UC patients, upregulated miR-155 promoted high microsatellite instability and induced signal transducer and activator of transcription 3 (STAT-3) expression via the inhibition of suppressors of cytokine signalling 1 (SOCS1). In contrast, the absence of miR-155 overexpression in the sigmoid colon of PSC-UC patients activated the Il-6/S1PR1 signalling pathway and imbalanced the IL17/FOXP3 ratio, which reinforces chronic colitis. Functional studies on human intestinal epithelial cells (HT-29 and NCM460D) confirmed the role of miR-155 over-expression in the inhibition of MMR genes and the modulation of p53. Moreover, those cells produced more TNFα upon a lipopolysaccharide challenge, which led to the suppression of miR-155. Additionally, exposure to bile acids induced upregulation of miR-155 in Caco-2 cell lines. Thus, under different conditions, miR-155 is involved in either neoplastic transformation in the ascending colon or chronic colitis in the sigmoid colon of patients with PSC. New insight into local modulation of microRNAs, that may alter the course of the disease, could be used for further research on potential therapeutic applications.


Asunto(s)
Colangitis Esclerosante , Colitis Ulcerosa , Reparación de la Incompatibilidad de ADN , MicroARNs , Células CACO-2 , Transformación Celular Neoplásica , Colangitis Esclerosante/complicaciones , Colangitis Esclerosante/genética , Colangitis Esclerosante/metabolismo , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Inestabilidad de Microsatélites , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Biochem Biophys Res Commun ; 511(2): 260-265, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30791979

RESUMEN

Lung cancer causes the highest number of cancer-related deaths worldwide. Resistance to therapy is a major clinical issue contributing to the poor prognosis of lung cancer. In recent years, targeted therapy has become a concept where subgroups of non-small cell lung cancer (NSCLC) with genetically altered receptor tyrosine kinases are targeted by tyrosine kinase inhibitors (TKIs). One such subgroup harbors a gene fusion of echinoderm microtubule-associated protein-like 4 (EML4) with anaplastic lymphoma kinase (ALK). Although most NSCLC patients with EML4-ALK fusions initially respond to ALK TKI-therapy they eventually develop resistance. While ALK kinase domain mutations contribute to ALK TKI-refractoriness, they are only present in a fraction of all ALK TKI-resistant tumors. In this study we sought to explore a possible involvement of microRNAs (miRNAs) in conferring resistance to ALK TKIs in ALK TKI-refractory NSCLC cell lines. We subjected our ALK TKI-refractory cancer cells along with parental cancer cells to systematic miRNA expression arrays. Furthermore, ALK TKI-refractory cancer cells were exposed to a synthetic miRNA inhibitory Locked Nucleic Acid (LNA)-library in the presence of ALK TKIs Crizotinib or Lorlatinib. The outcome of the combined approaches uncovered miR-100-5p to confer resistance to Crizotinib and Lorlatinib in EML4-ALK NSCLC cells and to be a potential therapeutic target in drug resistance.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Fusión Oncogénica/genética , Inhibidores de Proteínas Quinasas/farmacología , Serina Endopeptidasas/genética , Aminopiridinas , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Crizotinib/farmacología , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lactamas , Lactamas Macrocíclicas/farmacología , Neoplasias Pulmonares/genética , Pirazoles
3.
Eur J Pharmacol ; 978: 176751, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897442

RESUMEN

The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.

4.
Int J Biol Macromol ; 265(Pt 2): 130726, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490392

RESUMEN

The utilization of neurotrophins in medicine shows significant potential for addressing neurodegenerative conditions, such as age-related macular degeneration (AMD). However, the therapeutic use of neurotrophins has been restricted due to their short half-life. Here, we aimed to synthesize PEGylated nanoparticles based on electrostatic-driven interactions between human serum albumin (HSA), a carrier for adsorption; neurotrophin-3 (NT3); and brain-derived neurotrophic factor (BDNF). Electrophoretic (ELS) and multi-angle dynamic light scattering (MADLS) revealed that the PEGylated HSA-NT3-BDNF nanoparticles ranged from 10 to 430 nm in diameter and exhibited a low polydispersity index (<0.4) and a zeta potential of -8 mV. Based on microscale thermophoresis (MST), the estimated dissociation constant (Kd) from the HSA molecule of BDNF was 1.6 µM, and the Kd of NT3 was 732 µM. The nanoparticles were nontoxic toward ARPE-19 and L-929 cells in vitro and efficiently delivered BDNF and NT3. Based on the biodistribution of neurotrophins after intravitreal injection into BALB/c mice, both nanoparticles were gradually released in the mouse vitreous body within 28 days. PEGylated HSA-NT3-BDNF nanoparticles stabilize neurotrophins and maintain this characteristic in vivo. Thus, given the simplicity of the system, the nanoparticles may enhance the treatment of a variety of neurological disorders in the future.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Polietilenglicoles , Ratones , Humanos , Animales , Distribución Tisular , Potenciales de la Membrana
5.
Sci Rep ; 13(1): 17939, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864014

RESUMEN

Biomaterial science has contributed tremendously to developing nanoscale materials for delivering biologically active compounds, enhancing protein stability, and enabling its therapeutic use. This paper presents a process of formation of polyelectrolyte multilayer (PEM) prepared by sequential adsorption of positively charged polydiallyldimethylammonium chloride (PDADMAC) and negatively charged heparin sodium salt (HP), from low polyelectrolyte concentration, on a solid substrate. PEM was further applied as a platform for the adsorption of a brain-derived growth factor (BDNF), which is a protein capable of regulating neuronal cell development. The multilayers containing BDNF were thoroughly characterized by electrokinetic (streaming potential measurements, SPM) and optical (optical waveguide lightmode spectroscopy, OWLS) techniques. It was found that BDNF was significantly adsorbed onto polyelectrolyte multilayers terminated by HP under physiological conditions. We further explore the effect of established PEMs in vitro on the neuroblastoma SH-SY5Y cell line. An enzyme-linked immunosorbent assay (ELISA) confirmed that BDNF was released from multilayers, and the use of the PEMs intensified its cellular uptake. Compared to the control, PEMs with adsorbed BDNF significantly reduced cell viability and mitochondrial membrane polarization to as low as 72% and 58%, respectively. HPLC analysis showed that both PDADMAC-terminated and HP-terminated multilayers have antioxidative properties as they almost by half decreased lipid peroxidation in SH-SY5Y cells. Finally, enhanced formation of spheroid-like, 3D structures was observed by light microscopy. We offer a well-characterized PEM with antioxidant properties acting as a BDNF carrier, stabilizing BDNF and making it more accessible to cells in an inhomogeneous, dynamic, and transient in vitro environment. Described multilayers can be utilized in future biomedical applications, such as boosting the effect of treatment by selective anticancer as adjuvant therapy, and in biomedical research for future development of more precise neurodegenerative disease models, as they enhance cellular 3D structure formation.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Heparina/farmacología , Heparina/química , Polielectrolitos/química , Factor Neurotrófico Derivado del Encéfalo , Neuroblastoma/tratamiento farmacológico
6.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35892900

RESUMEN

The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients' stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 µM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38- subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs.

7.
Sci Adv ; 6(25): eabb2210, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32704543

RESUMEN

Inhibitors of cyclin-dependent kinases CDK4 and CDK6 have been approved for treatment of hormone receptor-positive breast cancers. In contrast, triple-negative breast cancers (TNBCs) are resistant to CDK4/6 inhibition. Here, we demonstrate that a subset of TNBC critically requires CDK4/6 for proliferation, and yet, these TNBC are resistant to CDK4/6 inhibition due to sequestration of CDK4/6 inhibitors into tumor cell lysosomes. This sequestration is caused by enhanced lysosomal biogenesis and increased lysosomal numbers in TNBC cells. We developed new CDK4/6 inhibitor compounds that evade the lysosomal sequestration and are efficacious against resistant TNBC. We also show that coadministration of lysosomotropic or lysosome-destabilizing compounds (an antibiotic azithromycin, an antidepressant siramesine, an antimalaria compound chloroquine) renders resistant tumor cells sensitive to currently used CDK4/6 inhibitors. Lastly, coinhibition of CDK2 arrested proliferation of CDK4/6 inhibitor-resistant cells. These observations may extend the use of CDK4/6 inhibitors to TNBCs that are refractory to current anti-CDK4/6 therapies.

8.
Biomolecules ; 9(9)2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487824

RESUMEN

We identified novel dicarboximides that were selectively cytotoxic towards human leukemia cells. Using chemical and biological methods, we characterized the biological activity, identified cellular protein targets and defined the mechanism of action of the test dicarboximides. The reported IC50 values (concentration required to reduce cell survival fraction to 50% of control) of selected dicarboximides were similar or lower than IC50 of registered anticancer drugs, for example cytarabine, sorafenib, irinotecan. Test compounds induced apoptosis in chronic myelogenous (K562) and acute lymphoblastic (MOLT-4) leukemia cells by activation of receptor and mitochondrial apoptotic pathways and increased the expression of proapoptotic genes (BAX, NOXA, HTRA2, TNFRSF10B, ESRRBL1). Selected dicarboximides displayed immunomodulatory activity and downregulated IKZF1 and IKZF3 transcription factors in K562 and MOLT-4 leukemia cells. ATP-binding cassette protein 50 (ABC50) was identified as a target for dicarboximides. Cancer cells with knocked down ABC50 showed increased resistance to dicarboximides. Based on the structure of dicarboximides and thalidomide, novel proteolysis-targeting chimeras (PROTACs) were synthesized and used as tools to downregulate ABC50 in leukemia cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Antineoplásicos/farmacología , Factores Inmunológicos/farmacología , Talidomida/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Factores Inmunológicos/síntesis química , Factores Inmunológicos/química , Células K562 , Estructura Molecular , Relación Estructura-Actividad , Talidomida/síntesis química , Talidomida/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA