Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 164(5): 1060-1072, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919435

RESUMEN

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Metilación de ADN , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/patología , Secuencia de Aminoácidos , Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Tumores Neuroectodérmicos/clasificación , Tumores Neuroectodérmicos/diagnóstico , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal , Transactivadores , Proteínas Supresoras de Tumor/genética
2.
Nature ; 580(7803): 396-401, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296180

RESUMEN

Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.


Asunto(s)
Neoplasias Cerebelosas/metabolismo , Mutación de Línea Germinal , Meduloblastoma/metabolismo , Factores de Elongación Transcripcional/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Niño , Femenino , Humanos , Masculino , Meduloblastoma/genética , Linaje , ARN de Transferencia/metabolismo , Factores de Elongación Transcripcional/genética
3.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244574

RESUMEN

MOTIVATION: Copy-number variations (CNVs) are common genetic alterations in cancer and their detection may impact tumor classification and therapeutic decisions. However, detection of clinically relevant large and focal CNVs remains challenging when sample material or resources are limited. This has motivated us to create a software tool to infer CNVs from DNA methylation arrays which are often generated as part of clinical routines and in research settings. RESULTS: We present our R package, conumee 2.0, that combines tangent normalization, an adjustable genomic binning heuristic, and weighted circular binary segmentation to utilize DNA methylation arrays for CNV analysis and mitigate technical biases and batch effects. Segmentation results were validated in a lung squamous cell carcinoma dataset from TCGA (n = 367 samples) by comparison to segmentations derived from genotyping arrays (Pearson's correlation coefficient of 0.91). We further introduce a segmented block bootstrapping approach to detect focal alternations that achieved 60.9% sensitivity and 98.6% specificity for deletions affecting CDKN2A/B (60.0% and 96.9% for RB1, respectively) in a low-grade glioma cohort from TCGA (n = 239 samples). Finally, our tool provides functionality to detect and summarize CNVs across large sample cohorts. AVAILABILITY AND IMPLEMENTATION: Conumee 2.0 is available under open-source license at: https://github.com/hovestadtlab/conumee2.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Animales , Ratones , Programas Informáticos , Variaciones en el Número de Copia de ADN , Neoplasias/genética , Genómica , Algoritmos
4.
Acta Neuropathol ; 147(1): 24, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265522

RESUMEN

The diagnosis of ependymoma has moved from a purely histopathological review with limited prognostic value to an integrated diagnosis, relying heavily on molecular information. However, as the integrated approach is still novel and some molecular ependymoma subtypes are quite rare, few studies have correlated integrated pathology and clinical outcome, often focusing on small series of single molecular types. We collected data from 2023 ependymomas as classified by DNA methylation profiling, consisting of 1736 previously published and 287 unpublished methylation profiles. Methylation data and clinical information were correlated, and an integrated model was developed to predict progression-free survival. Patients with EPN-PFA, EPN-ZFTA, and EPN-MYCN tumors showed the worst outcome with 10-year overall survival rates of 56%, 62%, and 32%, respectively. EPN-PFA harbored chromosome 1q gains and/or 6q losses as markers for worse survival. In supratentorial EPN-ZFTA, a combined loss of CDKN2A and B indicated worse survival, whereas a single loss did not. Twelve out of 200 EPN-ZFTA (6%) were located in the posterior fossa, and these tumors relapsed or progressed even earlier than supratentorial tumors with a combined loss of CDKN2A/B. Patients with MPE and PF-SE, generally regarded as non-aggressive tumors, only had a 10-year progression-free survival of 59% and 65%, respectively. For the prediction of the 5-year progression-free survival, Kaplan-Meier estimators based on the molecular subtype, a Support Vector Machine based on methylation, and an integrated model based on clinical factors, CNV data, and predicted methylation scores achieved balanced accuracies of 66%, 68%, and 73%, respectively. Excluding samples with low prediction scores resulted in balanced accuracies of over 80%. In sum, our large-scale analysis of ependymomas provides robust information about molecular features and their clinical meaning. Our data are particularly relevant for rare and hardly explored tumor subtypes and seemingly benign variants that display higher recurrence rates than previously believed.


Asunto(s)
Ependimoma , Humanos , Supervivencia sin Progresión , Procesamiento Proteico-Postraduccional
5.
J Neurooncol ; 169(2): 391-398, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38937309

RESUMEN

PURPOSE: Diffuse midline gliomas (DMG) with H3K27 alterations (H3K27M-DMG) are a highly aggressive form of brain cancer. In rare cases, H3K27 mutations have been observed in diffuse non-midline gliomas (DNMG). It is currently unclear how these tumors should be classified. Herein, we analyze the characteristics of DNMG with H3K27M mutations. METHODS: We reviewed the clinical, radiological and histological characteristics of all patients with an H3K27M mutated diffuse glioma diagnosed in our institution, between 2016 and 2023, to identify cases with a non-midline location. We then performed a molecular characterization (DNA methylation profiling, whole genome and transcriptome sequencing or targeted sequencing) of patients with an H3K27M-mutant DNMG and reviewed previously reported cases. RESULTS: Among 51 patients (18 children and 33 adults) diagnosed with an H3K27M diffuse glioma, we identified two patients (4%) who had a non-midline location. Including our two patients, 39 patients were reported in the literature with an H3K27M-mutant DNMG. Tumors were most frequently located in the temporal lobe (48%), affected adolescents and adults, and were associated with a poor outcome (median overall survival was 10.3 months (0.1-84)). Median age at diagnosis was 19.1 years. Tumors frequently harbored TP53 mutations (74%), ATRX mutations (71%) and PDGFRA mutations or amplifications (44%). In DNA methylation analysis, H3K27M-mutant DNMG clustered within or close to the reference group of H3K27M-mutant DMG. Compared to their midline counterpart, non-midline gliomas with H3K27M mutations seemed more frequently associated with PDGFRA alterations. CONCLUSION: DNMG with H3K27M mutations share many similarities with their midline counterpart, suggesting that they correspond to a rare anatomical presentation of these tumors. This is of paramount importance, as they may benefit from new therapeutic approaches such as ONC201.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Mutación , Humanos , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Masculino , Femenino , Adulto , Adolescente , Adulto Joven , Niño , Persona de Mediana Edad , Histonas/genética , Preescolar , Metilación de ADN , Anciano , Pronóstico , Histona Demetilasas con Dominio de Jumonji/genética
6.
J Neurooncol ; 166(2): 359-368, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38253790

RESUMEN

PURPOSE: To provide a treatment-focused review and develop basic treatment guidelines for patients diagnosed with pineal anlage tumor (PAT). METHODS: Prospectively collected data of three patients with pineal anlage tumor from Germany was combined with clinical details and treatment information from 17 published cases. RESULTS: Overall, 20 cases of PAT were identified (3 not previously reported German cases, 17 cases from published reports). Age at diagnosis ranged from 0.3 to 35.0 (median: 3.2 ± 7.8) years. All but three cases were diagnosed before the age of three years. For three cases, metastatic disease at initial staging was described. All patients underwent tumor surgery (gross-total resection: 9, subtotal resection/biopsy: 9, extent of resection unknown: 2). 15/20 patients were alive at last follow-up. Median follow-up for 10/15 surviving patients with available follow-up and treatment data was 2.4 years (0.3-6.5). Relapse was reported for 3 patients within 0.8 years after diagnosis. Five patients died, 3 after relapse and 2 from early postoperative complications. Two-year-progression-free- and -overall survival were 65.2 ± 12.7% and 49.2 ± 18.2%, respectively. All 4 patients who received intensive chemotherapy including high-dose chemotherapy combined with radiotherapy (2 focal, 2 craniospinal [CSI]) had no recurrence. Focal radiotherapy- and CSI-free survival rates in 13 evaluable patients were 46.2% (6/13) and 61.5% (8/13), respectively. CONCLUSION: PAT is an aggressive disease mostly affecting young children. Therefore, adjuvant therapy using intensive chemotherapy and considering radiotherapy appears to comprise an appropriate treatment strategy. Reporting further cases is crucial to evaluate distinct treatment strategies.


Asunto(s)
Neoplasias Encefálicas , Glándula Pineal , Pinealoma , Neoplasias Supratentoriales , Adolescente , Adulto , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirugía , Recurrencia Local de Neoplasia/patología , Glándula Pineal/cirugía , Glándula Pineal/patología , Pinealoma/diagnóstico , Pinealoma/cirugía , Recurrencia , Neoplasias Supratentoriales/patología , Resultado del Tratamiento
8.
Nature ; 555(7697): 469-474, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539639

RESUMEN

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Asunto(s)
Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Metilación de ADN , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/patología , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Aprendizaje Automático no Supervisado , Adulto Joven
9.
Nature ; 555(7696): 321-327, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29489754

RESUMEN

Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.


Asunto(s)
Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias/clasificación , Neoplasias/genética , Adolescente , Adulto , Niño , Cromotripsis , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Diploidia , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal/genética , Humanos , Terapia Molecular Dirigida , Tasa de Mutación , Neoplasias/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , Adulto Joven
10.
Acta Neuropathol ; 145(1): 97-112, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459208

RESUMEN

Molecular groups of medulloblastoma (MB) are well established. Novel risk stratification parameters include Group 3/4 (non-WNT/non-SHH) methylation subgroups I-VIII or whole-chromosomal aberration (WCA) phenotypes. This study investigates the integration of clinical and molecular parameters to improve risk stratification of non-WNT/non-SHH MB. Non-WNT/non-SHH MB from the HIT2000 study and the HIT-MED registries were selected based on availability of DNA-methylation profiling data. MYC or MYCN amplification and WCA of chromosomes 7, 8, and 11 were inferred from methylation array-based copy number profiles. In total, 403 non-WNT/non-SHH MB were identified, 346/403 (86%) had a methylation class family Group 3/4 methylation score (classifier v11b6) ≥ 0.9, and 294/346 (73%) were included in the risk stratification modeling based on Group 3 or 4 score (v11b6) ≥ 0.8 and subgroup I-VIII score (mb_g34) ≥ 0.8. Group 3 MB (5y-PFS, survival estimation ± standard deviation: 41.4 ± 4.6%; 5y-OS: 48.8 ± 5.0%) showed poorer survival compared to Group 4 (5y-PFS: 68.2 ± 3.7%; 5y-OS: 84.8 ± 2.8%). Subgroups II (5y-PFS: 27.6 ± 8.2%) and III (5y-PFS: 37.5 ± 7.9%) showed the poorest and subgroup VI (5y-PFS: 76.6 ± 7.9%), VII (5y-PFS: 75.9 ± 7.2%), and VIII (5y-PFS: 66.6 ± 5.8%) the best survival. Multivariate analysis revealed subgroup in combination with WCA phenotype to best predict risk of progression and death. The integration of clinical (age, M and R status) and molecular (MYC/N, subgroup, WCA phenotype) variables identified a low-risk stratum with a 5y-PFS of 94 ± 5.7 and a very high-risk stratum with a 5y-PFS of 29 ± 6.1%. Validation in an international MB cohort confirmed the combined stratification scheme with 82.1 ± 6.0% 5y-PFS in the low and 47.5 ± 4.1% in very high-risk groups, and outperformed the clinical model. These newly identified clinico-molecular low-risk and very high-risk strata, accounting for 6%, and 21% of non-WNT/non-SHH MB patients, respectively, may improve future treatment stratification.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Neoplasias Cerebelosas/genética , Aberraciones Cromosómicas , Riesgo , Análisis por Micromatrices
11.
Acta Neuropathol ; 145(1): 49-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36437415

RESUMEN

Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/ß-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Tumores Neuroectodérmicos Primitivos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Proteínas de Ciclo Celular/genética , Neoplasias del Sistema Nervioso Central/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Tumores Neuroectodérmicos Primitivos/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Vía de Señalización Wnt/genética
12.
Int J Cancer ; 151(9): 1431-1446, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35603902

RESUMEN

Glial-lineage malignancies (gliomas) recurrently mutate and/or delete the master regulators of apoptosis p53 and/or p16/CDKN2A, undermining apoptosis-intending (cytotoxic) treatments. By contrast to disrupted p53/p16, glioma cells are live-wired with the master transcription factor circuits that specify and drive glial lineage fates: these transcription factors activate early-glial and replication programs as expected, but fail in their other usual function of forcing onward glial lineage-maturation-late-glial genes have constitutively "closed" chromatin requiring chromatin-remodeling for activation-glioma-genesis disrupts several epigenetic components needed to perform this work, and simultaneously amplifies repressing epigenetic machinery instead. Pharmacologic inhibition of repressing epigenetic enzymes thus allows activation of late-glial genes and terminates glioma self-replication (self-replication = replication without lineage-maturation), independent of p53/p16/apoptosis. Lineage-specifying master transcription factors therefore contrast with p53/p16 in being enriched in self-replicating glioma cells, reveal a cause-effect relationship between aberrant epigenetic repression of late-lineage programs and malignant self-replication, and point to specific epigenetic targets for noncytotoxic glioma-therapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Cromatina , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Humanos , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética
13.
Cancer ; 128(4): 697-707, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34674226

RESUMEN

BACKGROUND: A high frequency of primary central nervous system (CNS) sarcomas was observed in Peru. This article describes the clinical characteristics, biological characteristics, and outcome of 70 pediatric patients. METHODS: Data from 70 pediatric patients with primary CNS sarcomas diagnosed between January 2005 and June 2018 were analyzed. DNA methylation profiling from 28 tumors and gene panel sequencing from 27 tumors were available. RESULTS: The median age of the patients was 6 years (range, 2-17.5 years), and 66 of 70 patients had supratentorial tumors. DNA methylation profiling classified 28 of 28 tumors as primary CNS sarcoma, DICER1 mutant. DICER1 mutations were found in 26 of 27 cases, TP53 mutations were found in 22 of 27 cases, and RAS-pathway gene mutations (NF1, KRAS, and NRAS) were found in 19 of 27 tumors, all of which were somatic (germline control available in 19 cases). The estimated incidence in Peru was 0.19 cases per 100,000 children (<18 years old) per year, which is significantly higher than the estimated incidence in Germany (0.007 cases per 100,000 children [<18 years] per year; P < .001). Patients with nonmetastatic disease (n = 46) that were treated with a combination therapy had a 2-year progression-free survival (PFS) rate of 58% (95% CI, 44%-76%) and a 2-year overall survival rate of 71% (95% CI, 57%-87%). PFS was the highest in patients treated with chemotherapy with ifosfamide, carboplatin, and etoposide (ICE) after upfront surgery followed by radiotherapy and ICE (2-year PFS, 79% [59%-100%], n = 18). CONCLUSIONS: Primary CNS sarcoma with DICER1 mutation has an aggressive clinical course. A combination of surgery, chemotherapy, and radiotherapy seems beneficial. An underlying cancer predisposition syndrome explaining the increased incidence in Peruvian patients has not been identified so far. LAY SUMMARY: A high incidence of primary pediatric central nervous system sarcomas in the Peruvian population is described. Using sequencing technologies and DNA methylation profiling, it is confirmed that these tumors molecularly belong to the recently proposed entity "primary central nervous system sarcomas, DICER1 mutant." Unexpectedly, DICER1 mutations as well as all other defining tumor mutations (TP53 mutations and RAS-pathway mutations) were not inherited in all 19 patients where analyzation was possible. These tumors have an aggressive clinical course. Multimodal combination therapy based on surgery, ifosfamide, carboplatin, and etoposide chemotherapy, and local radiotherapy leads to superior outcomes.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Sarcoma , Adolescente , Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/genética , Niño , Preescolar , ARN Helicasas DEAD-box/genética , Humanos , Mutación , Perú/epidemiología , Ribonucleasa III/genética , Sarcoma/tratamiento farmacológico , Sarcoma/genética
14.
Acta Neuropathol ; 144(1): 129-142, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35660939

RESUMEN

Glioblastoma (GBM) derived from the "stem cell" rich subventricular zone (SVZ) may constitute a therapy-refractory subgroup of tumors associated with poor prognosis. Risk stratification for these cases is necessary but is curtailed by error prone imaging-based evaluation. Therefore, we aimed to establish a robust DNA methylome-based classification of SVZ GBM and subsequently decipher underlying molecular characteristics. MRI assessment of SVZ association was performed in a retrospective training set of IDH-wildtype GBM patients (n = 54) uniformly treated with postoperative chemoradiotherapy. DNA isolated from FFPE samples was subject to methylome and copy number variation (CNV) analysis using Illumina Platform and cnAnalysis450k package. Deep next-generation sequencing (NGS) of a panel of 130 GBM-related genes was conducted (Agilent SureSelect/Illumina). Methylome, transcriptome, CNV, MRI, and mutational profiles of SVZ GBM were further evaluated in a confirmatory cohort of 132 patients (TCGA/TCIA). A 15 CpG SVZ methylation signature (SVZM) was discovered based on clustering and random forest analysis. One third of CpG in the SVZM were associated with MAB21L2/LRBA. There was a 14.8% (n = 8) discordance between SVZM vs. MRI classification. Re-analysis of these patients favored SVZM classification with a hazard ratio (HR) for OS of 2.48 [95% CI 1.35-4.58], p = 0.004 vs. 1.83 [1.0-3.35], p = 0.049 for MRI classification. In the validation cohort, consensus MRI based assignment was achieved in 62% of patients with an intraclass correlation (ICC) of 0.51 and non-significant HR for OS (2.03 [0.81-5.09], p = 0.133). In contrast, SVZM identified two prognostically distinct subgroups (HR 3.08 [1.24-7.66], p = 0.016). CNV alterations revealed loss of chromosome 10 in SVZM- and gains on chromosome 19 in SVZM- tumors. SVZM- tumors were also enriched for differentially mutated genes (p < 0.001). In summary, SVZM classification provides a novel means for stratifying GBM patients with poor prognosis and deciphering molecular mechanisms governing aggressive tumor phenotypes.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Variaciones en el Número de Copia de ADN , Epigenoma , Proteínas del Ojo/genética , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/patología , Pronóstico , Estudios Retrospectivos
15.
J Neurooncol ; 157(1): 37-48, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35190934

RESUMEN

PURPOSE: To evaluate the clinical impact of isolated spread of medulloblastoma cells into cerebrospinal fluid without additional macroscopic metastases (M1-only). METHODS: The HIT-MED database was searched for pediatric patients with M1-only medulloblastoma diagnosed from 2000 to 2019. Corresponding clinical and molecular data was evaluated. Treatment was stratified by age and changed over time for older patients. RESULTS: 70 patients with centrally reviewed M1-only disease were identified. Clinical data was available for all and molecular data for 45/70 cases. 91% were non-WNT/non-SHH medulloblastoma (Grp3/4). 5-year PFS for 52 patients ≥ 4 years was 59.4 (± 7.1) %, receiving either upfront craniospinal irradiation (CSI) or SKK-sandwich chemotherapy (CT). Outcomes did not differ between these strategies (5-year PFS: CSI 61.7 ± 9.9%, SKK-CT 56.7 ± 6.1%). For patients < 4 years (n = 18), 5-year PFS was 50.0 (± 13.2) %. M1-persistence occurred exclusively using postoperative CT and was a strong negative predictive factor (pPFS/OS < 0.01). Patients with additional clinical or molecular high-risk (HR) characteristics had worse outcomes (5-year PFS 42.7 ± 10.6% vs. 64.0 ± 7.0%, p = 0.03). In n = 22 patients ≥ 4 years with full molecular information and without additional HR characteristics, risk classification by molecular subtyping had an effect on 5-year PFS (HR 16.7 ± 15.2%, SR 77.8 ± 13.9%; p = 0.01). CONCLUSIONS: Our results confirm that M1-only is a high-risk condition, and further underline the importance of CSF staging. Specific risk stratification of affected patients needs attention in future discussions for trials and treatment recommendations. Future patients without contraindications may benefit from upfront CSI by sparing risks related to higher cumulative CT applied in sandwich regimen.


Asunto(s)
Neoplasias Cerebelosas , Irradiación Craneoespinal , Meduloblastoma , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/terapia , Niño , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/terapia , Factores de Riesgo
16.
J Pediatr Hematol Oncol ; 44(7): e968-e975, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699462

RESUMEN

INTRODUCTION: Granulocyte transfusions have long been used to bridge the time to neutrophil recovery in patients with neutropenia and severe infection. Recent randomized controlled trials did not prove a beneficial effect of granulocyte transfusions, but were likely underpowered and suffered from very heterogeneous study populations. METHODS: We retrospectively reviewed data of all patients treated with granulocyte transfusions at our pediatric center from 2004 to 2019. To identify parameters that predict the success of granulocyte transfusions, we stratified patients in 3 groups. Patients in group 1 cleared their infection, whereas patients in group 2 succumbed to an infection in neutropenia despite granulocyte transfusions. A third group included all patients who died of causes that were not related to infection. RESULTS: We demonstrate that patients without respiratory or cardiocirculatory insufficiency are enriched in group 1 and more likely to benefit from granulocyte transfusions than patients who already require these intensive care measures. The effect of granulocyte transfusions correlates with the cell dose per body weight applied per time. With our standard twice weekly dosing, patients with a body weight below 40 kg are more likely to achieve a sufficient leukocyte increment and clear their infection in comparison to patients with a higher body weight. DISCUSSION/CONCLUSIONS: We suggest that future studies on the benefits of granulocyte transfusions stratify patients according to clinical risk factors that include the need for respiratory or cardiocirculatory support and strive for a sufficient dose density of granulocyte transfusions.


Asunto(s)
Hematología , Neutropenia , Peso Corporal , Niño , Granulocitos , Humanos , Neutropenia/etiología , Estudios Retrospectivos
17.
Neuropathol Appl Neurobiol ; 47(3): 406-414, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33336421

RESUMEN

AIMS: KIAA1549-BRAF fusions occur in certain brain tumours and provide druggable targets due to a constitutive activation of the MAP-kinase pathway. We introduce workflows for calling the KIAA1549-BRAF fusion from DNA methylation array-derived copy number as well as DNA panel sequencing data. METHODS: Copy number profiles were analysed by automated screening and visual verification of a tandem duplication on chromosome 7q34, indicative of the KIAA1549-BRAF fusion. Pilocytic astrocytomas of the ICGC cohort with known fusion status were used for validation. KIAA1549-BRAF fusions were called from DNA panel sequencing data using the fusion callers Manta, Arriba with modified filtering criteria and deFuse. We screened DNA methylation and panel sequencing data of 7790 specimens from brain tumour and sarcoma entities. RESULTS: We identified the fusion in 337 brain tumours with both DNA methylation and panel sequencing data. Among these, we detected the fusion from copy number data in 84% and from DNA panel sequencing data in more than 90% using Arriba with modified filters. While in 74% the KIAA1549-BRAF fusion was detected from both methylation array-derived copy number and panel sequencing data, in 9% it was detected from copy number data only and in 16% from panel data only. The fusion was almost exclusively found in pilocytic astrocytomas, diffuse leptomeningeal glioneuronal tumours and high-grade astrocytomas with piloid features. CONCLUSIONS: The KIAA1549-BRAF fusion can be reliably detected from either DNA methylation array or DNA panel data. The use of both methods is recommended for the most sensitive detection of this diagnostically and therapeutically important marker.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Fusión Oncogénica/análisis , Análisis de Secuencia de ADN/métodos , Biomarcadores de Tumor/genética , Metilación de ADN , Dosificación de Gen , Humanos
18.
Acta Neuropathol ; 141(1): 85-100, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33216206

RESUMEN

Diffuse IDH-mutant astrocytoma mostly occurs in adults and carries a favorable prognosis compared to IDH-wildtype malignant gliomas. Acquired mismatch repair deficiency is known to occur in recurrent IDH-mutant gliomas as resistance mechanism towards alkylating chemotherapy. In this multi-institutional study, we report a novel epigenetic group of 32 IDH-mutant gliomas with proven or suspected hereditary mismatch repair deficiency. None of the tumors exhibited a combined 1p/19q deletion. These primary mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA) were histologically high-grade and were mainly found in children, adolescents and young adults (median age 14 years). Mismatch repair deficiency syndromes (Lynch or Constitutional Mismatch Repair Deficiency Syndrom (CMMRD)) were clinically diagnosed and/or germline mutations in DNA mismatch repair genes (MLH1, MSH6, MSH2) were found in all cases, except one case with a family and personal history of colon cancer and another case with MSH6-deficiency available only as recurrent tumor. Loss of at least one of the mismatch repair proteins was detected via immunohistochemistry in all, but one case analyzed. Tumors displayed a hypermutant genotype and microsatellite instability was present in more than half of the sequenced cases. Integrated somatic mutational and chromosomal copy number analyses showed frequent inactivation of TP53, RB1 and activation of RTK/PI3K/AKT pathways. In contrast to the majority of IDH-mutant gliomas, more than 60% of the samples in our cohort presented with an unmethylated MGMT promoter. While the rate of immuno-histochemical ATRX loss was reduced, variants of unknown significance were more frequently detected possibly indicating a higher frequency of ATRX inactivation by protein malfunction. Compared to reference cohorts of other IDH-mutant gliomas, primary mismatch repair-deficient IDH-mutant astrocytomas have by far the worst clinical outcome with a median survival of only 15 months irrespective of histological or molecular features. The findings reveal a so far unknown entity of IDH-mutant astrocytoma with high prognostic relevance. Diagnosis can be established by aligning with the characteristic DNA methylation profile, by DNA-sequencing-based proof of mismatch repair deficiency or immunohistochemically demonstrating loss-of-mismatch repair proteins.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Reparación de la Incompatibilidad de ADN/genética , Isocitrato Deshidrogenasa/genética , Adolescente , Adulto , Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Niño , Metilación de ADN , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Inestabilidad de Microsatélites , Mutación/genética , Recurrencia Local de Neoplasia , Pronóstico , Transducción de Señal/genética , Análisis de Supervivencia , Proteína Nuclear Ligada al Cromosoma X/genética , Adulto Joven
19.
Acta Neuropathol ; 142(5): 841-857, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34417833

RESUMEN

Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Factores de Transcripción de Tipo Kruppel/genética , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Proteínas Represoras/genética , Biomarcadores de Tumor/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Fusión de Oncogenes , Proteínas de Fusión Oncogénica/genética
20.
Acta Neuropathol ; 142(5): 827-839, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34355256

RESUMEN

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ependimoma/genética , Neoplasias Supratentoriales/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Niño , Femenino , Humanos , Masculino , Fusión de Oncogenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA