Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(35): 19269-19279, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524316

RESUMEN

The multiscale structural and rheological features of a series of dilute and semidilute low-methoxyl (LM) pectin solutions and a representative pectin/calcium sol-gel sample were systematically explored using a comprehensive combination of dynamic (DLS) and static light/X-ray scattering (SALS/SLS/SAXS), rheology, and microscopy (OM/SEM) characterizations. The study focused on the rarely explored colloidal aspect of LM pectin solutions and sol-gel transition, in contrast to the polymeric features extensively explored in previous studies. A highly uniform colloid-like, micron-sized agglomerate species was revealed in dilute solutions, with a progressively increased degree of flocculation in the semidilute regime (≥1.5 wt%). The agglomerate species in these solutions was resolved to be formed by random associations of individual pectin chains (L = 30 nm, r = 0.4 nm). Adding a critical amount of Ca2+ (10 wt%) to a semidilute solution (2 wt%) has an instant and pronounced effect of enhancing the agglomerate flocculation and resulting in a locally jammed state. Meanwhile, the agglomerate interior underwent microstructural transformation, leading to hierarchical structures defined by intermediate (spherical) aggregate species (Rg,aggregate ≈ 150 nm) and its packing cylindrical bundle (d ≈ 4 nm) composed of five pectin chains. Novel rheological features observed during the LM pectin/Ca2+ sol-gel transition include the following: the dynamic modulus data exhibited excellent TTS (gelling time/relaxation time superposition) as previously observed for weakly attractive colloidal gels. Three yield points were noticed for the final gel sample, suggested to mark the bond breaking of the cluster network, cage breaking of the resulting jammed flocculates, and, eventually, breakup of a flocculate into smaller agglomerates with increasing stress amplitude.

2.
Soft Matter ; 16(21): 4990-4998, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32436559

RESUMEN

We have identified the hierarchical (primary, secondary, tertiary and quaternary) structures of a polypseudorotaxane (PPR) gel composed of the Pluronic F108 and ß-cyclodextrin system to be ß-cyclodextrin crystalline, lamellar sheets, lamellar stacks and "grains", respectively. The correlation between the rheological properties and the proposed structures under shear flows was rationalized. Alignment of lamellar stacks and reorganization of grain boundaries under shear flows were investigated by rheo-SANS, small angle X-ray scattering and small-angle light scattering. The relaxation of highly aligned lamellar stacks is slow (>2 h) after flow cessation compared to that of the regrouped grains (a few minutes). The main contribution to thixotropic behavior is likely from the faster relaxation of the reorganized grains containing highly oriented lamellar stacks. The comprehensive understanding of structure-function relationship of the PPR gel will facilitate the rational design for its applications.


Asunto(s)
Hidrogeles/química , Poloxámero/química , Rotaxanos/química , beta-Ciclodextrinas/química , Reología
3.
Phys Rev Lett ; 123(23): 238002, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868485

RESUMEN

Manipulating building-block nanomaterials to form an ordered superstructure in a dilute and spacer-free solution phase challenges the existing 5-nm node lithography and nanorobotics. The cooperative nature of nanocrystals, polymers, and cells can lead to superarrays or colloidal crystals. For known highly ordered systems, the characteristic length of materials, defined as the shortest dimension of objects, is generally larger than their separations. A spacer (small-molecule surfactant or polymer) is typically required to diminish short range van der Waals attraction, which results in a glassy or liquid state. Herein we propose a new concept of achieving highly ordered nano-objects in a dilute and spacer-free system via the synergistic effects of excellent solvation and appropriate constraints on rotational motion. As a proof of concept, this study demonstrates that aluminosilicate nanotubes (AlSiNTs) suspended in water under dilute conditions (e.g., 1.0 wt%) can spontaneously form hexagonal arrays with an intertubular distance as large as tens of nanometers. The separation distance of the ordered superstructure is also tunable via controlling the concentration and length of nanotubes. These superaligned structures are probed using small-angle x-ray scattering and cryo-TEM characterizations, with underlying mechanisms investigated at an atomic level using molecular dynamics simulations. The concept and discovery of this work can open up opportunities to a variety of applications including visible-UV photonics and nanolithography, and may be generalizable to other nano-object systems that fulfill similar requirements.

4.
Phys Chem Chem Phys ; 21(7): 3960-3969, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30706931

RESUMEN

The solution properties of a synthesized imidazolium-based amphiphilic polyelectrolyte dissolved in pure- and mixed-solvent media composed of two aprotic polar solvents (N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP)) having a similar dielectric constant are explored in the semidilute regime (1-4 wt%). Rheological characterizations reveal that the use of mixed-solvent media (e.g., DMAc/NMP with 1 : 1 in volume fraction, designated as 1 : 1 DMAc/NMP) leads to a substantial reduction in the solution viscosity while altering the fluid attribute from gel-like (G' > G'') to critical-gel-like (G' ∼ G'' ∼ ωn, with n ≅ 0.5). To gain insight into these peculiar rheological features, dynamic light scattering analysis of the representative 1 : 1 DMAc/NMP medium indicates that the fraction and mean hydrodynamic radius of the micrometer-sized cluster alter substantially, too. Multiscale static light/X-ray scattering characterizations further reveal that only the NMP and 1 : 1 DMAc/NMP media (and not the DMAc) are capable of producing hierarchical structures of the cluster interior that are beneficial to mesoscale ion conduction, as supported by ac conductivity measurements. Overall, the present findings suggest that an appropriate selection of mixed-solvent media may offer an exceptional opportunity to promote the rheological, structural, and ion-conduction properties of a polyelectrolyte solution beyond the reach of the corresponding pure-solvent media.

5.
Angew Chem Int Ed Engl ; 57(40): 13271-13276, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076745

RESUMEN

Producing zeolite films with controlled preferred orientation on an industrial scale is a long-standing challenge. Herein we report on a scalable approach to the direct wet deposition of zeolite thin films and membranes while maintaining a high degree of control over the preferred crystal orientation. As a proof of concept, thin films comprising aluminophosphate zeolite AEI were cast on silicon wafer or porous alumina substrates. Electrical properties and separation performance of the zeolite thin films/membranes were engineered through controlling degree of preferred crystal orientation.

6.
Phys Chem Chem Phys ; 18(30): 20371-80, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27401818

RESUMEN

This paper reports on the fabrication of low-k (amorphous) silica thin films cast from solutions without and with two different types of surfactants (TWEEN® 80 and Triton™ X-100) to elucidate the relationships between the structural/morphological features of the casting solutions and the physical properties of the resulting thin films. Cryogenic transmission microscopy (cryo-TEM), static/dynamic light scattering (SLS/DLS), and small-angle X-ray scattering (SAXS) revealed contrasting colloidal dispersion states and phase behavior among the three casting solutions. Casting solution with the Triton™ X-100 surfactant produced stable (>90 days) nanoparticles with good dispersion in solution (mean particle size ∼10 nm) as well as good mesopore volume (characterized by nitrogen physisorption) in powder and thin films of high mechanical strength (characterized by the nanoindentation test). The longer main chain and bulkier side units of the TWEEN® 80 surfactant led to stable micelle-nanoparticle coexisting dispersion, which resulted in the highest mesopore volume in powder and thin films with the lowest dielectric constant (∼3) among the samples in this study. The casting solution without the surfactant failed to produce a stabilized solution or thin films of acceptable uniformity. These findings demonstrate the possibility of fine-tuning low-k silica film properties by controlling the colloidal state of casting solutions.

7.
Polymers (Basel) ; 11(9)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540102

RESUMEN

Herein, poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofiber-based organic field-effect transistors were successfully prepared by coaxial electrospinning technique with P3HT as the core polymer and poly(methyl methacrylate) (PMMA) as the shell polymer, followed by extraction of PMMA. Three different solvents for the core polymer, including chloroform, chlorobenzene and 1,2,4-trichlorobenzene, were employed to manipulate the morphologies and electrical properties of P3HT electrospun nanofibers. Through the analyses from dynamic light scattering of P3HT solutions, polarized photoluminescence and X-ray diffraction pattern of P3HT electrospun nanofibers, it is revealed that the P3HT electrospun nanofiber prepared from the chloroform system displays a low crystallinity but highly oriented crystalline grains due to the dominant population of isolated-chain species in solution that greatly facilitates P3HT chain stretching during electrospinning. The resulting high charge-carrier mobility of 3.57 × 10-1 cm2·V-1·s-1 and decent mechanical deformation up to a strain of 80% make the P3HT electrospun nanofiber a promising means for fabricating stretchable optoelectronic devices.

8.
J Phys Chem B ; 122(1): 380-391, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29193972

RESUMEN

The properties of (synthesized) single-walled aluminosilicate nanotube (AlSiNT; light-scattering characterized length ∼2000 ± 230 nm and diameter ∼35 ± 4 nm) dispersed in an aqueous poly(vinyl alcohol) (PVA) solution (10 wt %) are systematically explored using a comprehensive combination of (polarized/depolarized) dynamic light scattering, rheological, rheo-optical, and scanning electron microscopy analysis schemes. The nanotube/polymer dispersions under investigation are promising for their fair nanotube dispersion in pristine aqueous media (e.g., without salt or acid addition), as well as for the optical transparency that greatly facilitates systematic exploration of structural features and dispersion state that are practically inaccessible for many of their (opaque) companions such as carbon nanotube dispersions. We provide the first in-depth analysis revealing excellent dispersion state of (unmodified) AlSiNT in the PVA matrix, giving rise to (critical) gel-like features and substantially promoted elasticity that can be utilized, as a practical assessment, to produce uniform and defect-free electrospun nanofibers. Additionally, there is unambiguous evidence of nematic liquid crystal-like "wagging" (strain-invariant, periodic oscillation) under steady shear flow, a phenomenon previously unreported for nanotube composite materials. Overall, the present findings suggest that AlSiNT/PVA dispersions possess promising rheological, optical, and electrospinning properties that are highly desirable for current nanotechnological applications, and may serve as an ideal model system for establishing structure-performance relationships for like nanotube/polymer composite materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA