RESUMEN
Plants synthesize abundant terpenes through glandular trichomes (GTs), thereby protecting themselves from environmental stresses and increasing the economic value in some medicinal plants. However, the potential mechanisms for simultaneously regulating terpenes synthesis and GTs development remain unclear. Here, we showed that terpenes in Conyza blinii could be synthesized through capitate GTs. By treating with appropriate intensity of UV-B, the density of capitate GTs and diterpene content can be increased. Through analyzing corresponding transcriptome, we identified a MYB transcription factor CbMYB108 as a positive regulator of both diterpene synthesis and capitate GT density. Transiently overexpressing/silencing CbMYB108 on C. blinii leaves could increase diterpene synthesis and capitate GT density. Further verification showed that CbMYB108 upregulated CbDXS and CbGGPPS expression in diterpene synthesis pathway. Moreover, CbMYB108 could also upregulated the expression of CbTTG1, key WD40 protein confirmed in this study to promote GT development, rather than through interaction between CbMYB108 and CbTTG1 proteins. Thus, results showed that the UV-B-induced CbMYB108 owned dual-function of simultaneously improving diterpene synthesis and GT development. Our research lays a theoretical foundation for cultivating C. blinii with high terpene content, and broadens the understanding of the integrated mechanism on terpene synthesis and GT development in plants.
Asunto(s)
Conyza , Diterpenos , Conyza/metabolismo , Tricomas/metabolismo , Terpenos/metabolismo , Diterpenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Anthocyanin biosynthesis in plants is influenced by a wide range of environmental factors, such as light, temperature and nutrient availability. In this study, we revealed that the potassium-repressed anthocyanin accumulation in radish hypocotyls was associated with altered sugar distribution and sugar signaling pathways rather than changes in oxidative stress status. Sugar-feeding experiments suggested a hexokinase-independent glucose signal acted as a major contributor in regulating anthocyanin biosynthesis, transport and regulatory genes at the transcriptional level. Several R2R3-MYBs were identified as anthocyanin-related MYBs. Phylogenetic and protein sequence analyses suggested that RsMYB75 met the criteria of subgroup 6 MYB activator, while RsMYB39 and RsMYB82 seemed to be a non-canonical MYB anthocyanin activator and repressor, respectively. Through yeast-one-hybrid, dual-luciferase and transient expression assays, we confirmed that RsMYB39 strongly induced the promoter activity of anthocyanin transport-related gene RsGSTF12, while RsMYB82 significantly reduced anthocyanin biosynthesis gene RsANS1 expression. Molecular models are proposed in the discussion, allowing speculation on how these novel RsMYBs may regulate the expression levels of anthocyanin-related structural genes. Together, our data evidenced the strong impacts of potassium on sugar metabolism and signaling and its regulation of anthocyanin accumulation through different sugar signals and R2R3-MYBs in a hierarchical regulatory system.
Asunto(s)
Antocianinas , Raphanus , Factores de Transcripción/metabolismo , Raphanus/genética , Raphanus/metabolismo , Azúcares , Filogenia , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Mung bean is an important grain-legume crop and its sprout is an economical and nutrient vegetable for the public, but the genetic regulation of anthocyanin production, which is an antioxidant in mung bean, remains elusive. In our study, we characterized a subgroup (SG) 6 R2R3-MYB anthocyanin activator VrMYB90 and a SG 4 R2R3-MYB anthocyanin repressor VrMYB3, which synergistically function in regulating anthocyanin synthesis with VrbHLHA transcription factor. The overexpressed VrMYB90 protein activates the expression of VrMYB3 and VrbHLHA in mung bean hair roots, and also promotes VrDFR and VrANS transcript levels by directly binding to the corresponding promoters at specific motifs (CAACTG and CCGTTG). VrMYB90 interacts with VrbHLHA to enhance its regulatory activities on VrDFR and VrANS. Furthermore, the interaction between VrMYB3 with VrMYB90 and VrbHLHA could result in the restriction of anthocyanin synthesis to prevent excessive anthocyanin accumulation. Our results demonstrate that the VrMYB90 protein, in conjunction with VrMYB3 and VrbHLHA, forms a key regulatory module to fine-tune anthocyanin synthesis in mung bean.
Asunto(s)
Antocianinas , Vigna , Vigna/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
BACKGROUND: The health benefits of anthocyanins impel researchers and food producers to explorer new methods to increase anthocyanin contents in plant foods. Our previous studies revealed a positive role of nitric oxide (NO) in anthocyanin accumulation in radish (Raphanus sativus L.) sprouts. The application of hemin, an inducer of heme oxygenase-1 (HO-1), can effectively elevate NO production in vivo. Hemin treatment also improves plant growth and stress tolerance. This study is aimed to assess the effects of hemin treatment on anthocyanin production in radish sprouts, and to investigate whether NO signalling is involved in this process. RESULTS: The application of hemin significantly up regulated the expressions of many anthocyanins biosynthesis related structure and regulatory genes, leading to increased anthocyanins accumulation in radish hypocotyls. Hemin treatment also raised NO contents in radish sprouts, probably through enhancing nitrate reductase (NR) activity and Nitric Oxide-Associated 1 (NOA1) expression. Comparing the effects of Zinc Protoporphyrin (ZnPP, HO-1 activity inhibitor), Sodium Nitroprusside (SNP, NO donor) and carboxy-PTIO (cPTIO, NO-scavenger) on anthocyanin and NO production, a positive role of NO signalling has been revealed in hemin-derived anthocyanin accumulation. A positive feedback loop between HO-1 and NO may be involved in regulating this process. CONCLUSIONS: Hemin induced anthocyanin accumulation in radish sprouts through HO-1 and NO signalling network.
Asunto(s)
Brassicaceae , Raphanus , Antocianinas/metabolismo , Brassicaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Hemina/metabolismo , Hemina/farmacología , Hipocótilo/metabolismo , Óxido Nítrico/metabolismo , Raphanus/genéticaRESUMEN
Hydrogen gas (H2) has a possible signaling role in many developmental and adaptive plant responses, including mitigating the harmful effects of cadmium (Cd) uptake from soil. We used electrophysiological and molecular approaches to understand how H2 ameliorates Cd toxicity in pak choi (Brassica campestris ssp. chinensis). Exposure of pak choi roots to Cd resulted in a rapid increase in the intracellular H2 production. Exogenous application of hydrogen-rich water (HRW) resulted in a Cd-tolerant phenotype, with reduced net Cd uptake and accumulation. We showed that this is dependent upon the transport of calcium ions (Ca2+) across the plasma membrane and apoplastic generation of hydrogen peroxide (H2O2) by respiratory burst oxidase homolog (BcRbohD). The reduction in root Cd uptake was associated with the application of exogenous HRW or H2O2 This reduction was abolished in the iron-regulated transporter1 (Atirt1) mutant of Arabidopsis (Arabidopsis thaliana), and pak choi pretreated with HRW showed decreased BcIRT1 transcript levels. Roots exposed to HRW had rapid Ca2+ influx, and Cd-induced Ca2+ leakage was alleviated. Two Ca2+ channel blockers, gadolinium ion (Gd3+) and lanthanum ion (La3+), eliminated the HRW-induced increase in BcRbohD expression, H2O2 production, and Cd2+ influx inhibition. Collectively, our results suggest that the Cd-protective effect of H2 in plants may be explained by its control of the plasma membrane-based NADPH oxidase encoded by RbohD, which operates upstream of IRT1 and regulates root Cd uptake at both the transcriptional and functional levels. These findings provide a mechanistic explanation for the alleviatory role of H2 in Cd accumulation and toxicity in plants.
Asunto(s)
Brassica/metabolismo , Cadmio/metabolismo , Calcio/metabolismo , Peróxido de Hidrógeno/toxicidad , Hidrógeno/metabolismo , Raíces de Plantas/metabolismo , Agua/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Brassica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , NADPH Oxidasas/metabolismo , Raíces de Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismoRESUMEN
Cadmium (Cd) is one of the toxic heavy metals in soil, which not only suppresses crop production but also threatens human health. In this study, we aim to clarify the biological function of Cd-related gene BcHIPP16, so as to provide potential genetic solutions to decrease the Cd levels of pak choi. Tissue expression analysis showed that BcHIPP16 expressed in almost all the plant bodies. The transcriptional level of BcHIPP16 in roots was higher than that in shoots, which was significantly induced by copper (Cu) deficiency and Cd exposure conditions. Subcellular localization revealed that BcHIPP16 localized in plasma membrane. Expressing BcHIPP16 in yeast cells improved the sensitivity to Cu and Cd and improved their accumulation in yeast. Furthermore, the Cu and Cd content of Arabidopsis seedlings were increased and complemented, respectively when expressing BcHIPP16 in wild type (WT) and hip16 mutants. Non-invasive Micro-test Technology (NMT) was used to measure the real-time Cd2+ influx from the root surface of BcHIPP16 transgenic Arabidopsis lines, and the result demonstrated that BcHIPP16 promoted Cd2+ influx into Arabidopsis root cells. Taken together, our study showed that BcHIPP16 contributed to absorbing nutrient metal Cu and heavy metal Cd in planta.
Asunto(s)
Arabidopsis , Cadmio , Arabidopsis/genética , Cadmio/toxicidad , Membrana Celular , Cobre/toxicidad , Humanos , Raíces de Plantas/genéticaRESUMEN
Our previous studies showed that exogenous glutathione (GSH) decreased cadmium (Cd) concentration in shoots and alleviated the growth inhibition in pakchoi (Brassica chinensis L.) under Cd stress. Nevertheless, it is largely unknown how GSH decreases Cd accumulation in edible parts of pakchoi. This experiment mainly explored the mechanisms of GSH-induced reduction of Cd accumulation in shoot of pakchoi. The results showed that compared with sole Cd treatment, Cd + GSH treatment remarkably increased the expression of BcIRT1 and BcIRT2, and further enhanced the concentrations of Cd and Fe in root. By contrast, GSH application declined the concentration of Cd in the xylem sap. However, these results were not caused by xylem loading process because the expression of BcHMA2 and BcHMA4 had not significant difference between sole Cd treatment and Cd + GSH treatment. In addition, exogenous GSH significantly enhanced the expression of BcPCS1 and promoted the synthesis of PC2, PC3 and PC4 under Cd stress. At the same time, exogenous GSH also significantly improved the expression of BcABCC1 and BcABCC2 in the roots of seedling under Cd stress, suggesting that more PCs-Cd complexes may be sequestrated into vacuoles by ABCC1 and ABCC2 transporters. The results showed that exogenous GSH could up-regulate the expression of BcIRT1/2 to increase the Cd accumulation in root, and the improvement of PCs contents and the expression of BcABCC1/2 enhanced the compartmentalization of Cd in root vacuole of pakchoi under Cd stress. To sum up, exogenous GSH reduce the concentration of free Cd2+ in the cytoplast of root cells and then dropped the loading of Cd into the xylem, which eventually given rise to the reduction of Cd accumulation in edible portion of pakchoi.
Asunto(s)
Brassica/metabolismo , Cadmio/metabolismo , Glutatión/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Contaminantes del Suelo/metabolismo , Vacuolas/metabolismo , Transporte Biológico , Brassica/efectos de los fármacos , Brassica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Plantones/efectos de los fármacosRESUMEN
Soil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating salt-tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for non-invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+ /H+ antiporter-mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of salt-sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+ /H+ antiporters and HvVP1 H+ -pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ back-leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration.
Asunto(s)
Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Tolerancia a la Sal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Genotipo , Hordeum/clasificación , Hordeum/genética , Transporte Iónico/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad , Homología de Secuencia de Aminoácido , Intercambiadores de Sodio-Hidrógeno/genética , Especificidad de la Especie , Estrés FisiológicoRESUMEN
The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H+-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K+ leak from roots; (ii) reduced rates of net Na+ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na+ concentration in the cytoplasm by excluding Na+ to apoplast and sequestering Na+ in the vacuoles; (iv) a lower rate of H2O2 production and reduced reactive oxygen species-inducible K+ efflux from root epidermis; and (v) better K+ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.
Asunto(s)
Arabidopsis/fisiología , ATPasas de Translocación de Protón/metabolismo , Tolerancia a la Sal/fisiología , Ácido gamma-Aminobutírico/metabolismo , Arabidopsis/anatomía & histología , Biomasa , Supervivencia Celular , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Iones , Potenciales de la Membrana , Mutación/genética , Estrés Oxidativo , Epidermis de la Planta/metabolismo , Raíces de Plantas/citología , Brotes de la Planta/anatomía & histología , Potasio/metabolismo , Salinidad , Plantones/metabolismo , Sodio/metabolismo , Estrés Fisiológico , Transcripción GenéticaRESUMEN
The molecular mechanisms of the differences among the Cd tolerance and accumulation of different pak choi cultivars are essential to further breed Cd-safe genotypes pak choi. In our research, via morphological comparison, qRT-PCR and yeast function complementary approaches, we explored the differences of Cd tolerance and capacity for Cd uptake in nine various pak choi varieties. Results showed that higher expressions of BcZIPs involved in Cd uptake in 'Kang Re605' may lead to its higher capacity for Cd accumulation. The lowest expressions of transporter gene in 'Wu Yueman' were consistent with its fewest ability to uptake Cd. Beyond that, the difference of resistance was very great among varieties. Meanwhile, the expressions of the BcGSTUs were differentially induced by Cd exposure in different pak choi varieties, and 'Kang Re605' performed the highest BcGSTUs expression overall. To verify the role of GSTUs played in Cd resistance of pak choi, four BcGSTUs, BcGSTU4, BcGSTU11, BcGSTU12 and BcGSTU22 in a high-Cd accumulation and tolerance variety 'Kang Re605' were cloned, quantitated and transferred to Cd-sensitive yeast mutant strain. And finally found that BcGSTU11 increased the Cd tolerance of yeast, which may associate with a high Cd resistance of 'Kang Re605'. Simultaneously, less BcGSTUs abundance in 'Shang Haiqing' may result in its weak tolerance to Cd. These findings will help us to comprehend the roles of BcZIPs and BcGSTUs in Cd absorption and detoxification as well as promote our understanding of the Cd-resistant and Cd-accumulated mechanisms in pak choi.
Asunto(s)
Brassica/efectos de los fármacos , Cadmio/toxicidad , Glutatión Transferasa/genética , Proteínas de Plantas/genética , Contaminantes del Suelo/toxicidad , Transporte Biológico , Brassica/genética , Brassica/metabolismo , Cadmio/metabolismo , Glutatión Transferasa/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Factores de Transcripción , Zinc/metabolismoRESUMEN
Hemin (ferroprotoporphyrin IX), a compound derivative of heme, has been shown to exert numerous beneficial physiological functions in the resistance of plant to various abiotic stresses. This work investigated the effects of hemin on ameliorating Cd toxicity in Chinese cabbage (Brassica chinensis L.). Our results showed that leaf chlorosis, growth inhibition, root morphology and photosynthetic activity were significantly improved by the addition of hemin in Cd-stressed plants. Meanwhile, Cd-induced oxidative damage was also alleviated by hemin, which was supported by the decreased level of malondialdehyde (MDA) in roots of the seedlings treated with hemin. In the same time, the activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), as well as the concentrations of ascorbic acid (AsA) and glutathione (GSH) were elevated by hemin, which contributed to the scavenging of Cd-elicited H2O2 and O2â¢ï¼ within the roots of Chinese cabbage seedlings. Furthermore, compared with Cd stressed plants, Cd concentrations in both shoots and roots were markedly decreased by exogenous hemin. Hence, it can be speculated that hemin-mediated tolerance to Cd stress may be associated with the inhibition of Cd uptake in Chinese cabbage. This hypothesis was supported by the down-regulated expressions of transporter genes, including BcIRT1, BcIRT2, BcNramp1 and BcZIP2 caused by hemin addition in Chinese cabbage seedlings under Cd treatment. Taken together, these results suggested that hemin alleviated Cd toxicity probably through increasing antioxidative capacities and inhibiting Cd uptake of Chinese cabbage.
Asunto(s)
Antioxidantes/metabolismo , Brassica/efectos de los fármacos , Cadmio/metabolismo , Hemina/farmacología , Plantones/efectos de los fármacos , Ácido Ascórbico/metabolismo , Transporte Biológico , Brassica/metabolismo , Cadmio/toxicidad , Catalasa/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
BACKGROUND: Hydrogen gas (H2) is the most abundant element in the universe, and has been reported to act as a novel beneficial gaseous molecule in plant adaptive responses. Radish sprouts are popular because they contain substantial amounts of antioxidants and health-promoting compounds, such as anthocyanin and glucosinolates. Although radish sprouts accumulated more anthocyanin under UV-A after treatment with hydrogen-rich water (HRW), the molecular mechanism responsible is still elusive. To explore these mechanisms, RNA-seq analysis was used. RESULTS: Four cDNA libraries from radish sprout hypocotyls were constructed, and a total of 14,564 differentially expressed genes (DEGs) were identified through pairwise comparisons. By Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, these unigenes were found to be implicated in light signal perception and transduction, starch and sucrose metabolism, photosynthesis, nitrogen metabolism and biosynthesis of secondary metabolites. The MYB-bHLH-WD40 complex accounted for the majority of the transcription factors found to be involved in anthocyanin biosynthesis, and levels of transcripts for this complex were in accordance with the anthocyanin concentrations observed. In addition, other transcription factors (such as NAC, bZIP and TCP) might participate in HRW-promoted anthocyanin biosynthesis. Furthermore, the signaling processes of plant hormones, MAPKs and Ca2+ might be involved in HRW-promoted anthocyanin biosynthesis under UV-A. The expression patterns of 16 selected genes were confirmed using qRT-PCR analysis. CONCLUSIONS: Taken together, the results of this study may expand our understanding of HRW-promoted anthocyanin accumulation under UV-A in radish sprouts.
Asunto(s)
Antocianinas/biosíntesis , Hidrógeno/metabolismo , Raphanus/genética , Raphanus/metabolismo , Antocianinas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Anotación de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Agua/química , Agua/metabolismoRESUMEN
The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.
Asunto(s)
Citosol/metabolismo , Raíces de Plantas/metabolismo , Estrés Salino , Tolerancia a la Sal , Sodio/metabolismo , Triticum/metabolismo , Microscopía Confocal , Vacuolas/metabolismoRESUMEN
This study has investigated mechanisms conferring beneficial effects of exogenous application of 24-epibrassinolides (EBL) on plant growth and performance under saline conditions. Barley seedlings treated with 0.25 mg l-1 EBL showed significant improvements in root hair length, shoot length, shoot fresh weight and relative water content when grown in the presence of 150 mM NaCl in the growth medium. In addition, EBL treatment significantly decreased the Na+ content in both shoots (by approximately 50%) and roots. Electrophysiological experiments revealed that pre-treatment with EBL for 1 and 24 h suppressed or completely prevented the NaCl-induced K+ leak in the elongation zone of barley roots, but did not affect root sensitivity to oxidative stress. Further experiments using Arabidopsis loss-of-function gork1-1 (lacking functional depolarization-activated outward-rectifying K+ channels in the root epidermal cells) and akt1 (lacking inward-rectifying K+ uptake channel) mutants showed that NaCl-induced K+ loss in the elongation zone of roots was reduced by EBL pre-treatment 50- to 100-fold in wild-type Col-0 and akt1, but only 10-fold in the gork1-1 mutant. At the same time, EBL treatment shifted vanadate-sensitive H+ flux towards net efflux. Taken together, these data indicate that exogenous application of EBL effectively improves plant salinity tolerance by prevention of K+ loss via regulating depolarization-activated K+ channels.
Asunto(s)
Brasinoesteroides/farmacología , Hordeum/efectos de los fármacos , Proteínas de Plantas/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Esteroides Heterocíclicos/farmacología , Brasinoesteroides/metabolismo , Germinación/efectos de los fármacos , Hordeum/fisiología , Hidroponía , Concentración Osmolar , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Salinidad , Semillas/efectos de los fármacos , Semillas/fisiología , Sodio/metabolismo , Cloruro de Sodio/farmacología , Esteroides Heterocíclicos/metabolismoRESUMEN
A water-soluble exopolysaccharide, designated as LEP-2a, was isolated from Lachnum YM262 and purified by DEAE-Cellulose 52 and Sepharose CL-6B chromatographic columns. LEP-2a was a homogeneous polysaccharide, with a molecular weight of 1.52×105 Da. It was composed of mannose and galactose in a molar ratio of 20.6:1.0. Its structural features were investigated and elucidated by methylation analysis, periodate oxidation and Smith degradation, FT-IR and NMR spectroscopy. Based on obtained data, the backbone of LEP-2a consisted of 1,2-linked-α-d-mannose, 1,3-linked-α-d-mannose, 1,2,6-linked-α-d-mannose and 1,3-linked-ß-d-galactose and the side chains were attached to the backbone at O-6 position of 1,2,6-linked-α-d-mannose. In vitro antioxidant activity assay proved that LEP-2a possessed significant scavenging activities on superoxide, hydroxyl and DPPH radical. Furthermore, LEP-2a had strong in vitro moisture-absorption and -retention capacities as compared to chitosan and glycerol. These results suggested that LEP-2a might have a good potential to be applied as a multifunctional cosmetic additive in cosmetics.
Asunto(s)
Antioxidantes/química , Ascomicetos/química , Polisacáridos/química , Agua/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Ácido Ascórbico/química , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Conservadores Farmacéuticos/química , Conservadores Farmacéuticos/aislamiento & purificación , Conservadores Farmacéuticos/farmacología , SolubilidadRESUMEN
BACKGROUND: Raphanus sativus L. cv. Yanghua sprouts are rich in health-promoting anthocyanins; thus hypocotyls show a red color under light. In this study, effects of UV-B irradiation at 5 W m(-2) on anthocyanin biosynthesis in the hypocotyls of radish sprouts were investigated. RESULTS: Anthocyanins began to accumulate rapidly from 24 h irradiation and increased continuously until 48 h, showing a similar pattern to phenylalanine ammonia lyase (PAL) activity, with a correlation coefficient of 0.804. The expression of DFR and ANS paralleled the upward trend in anthocyanin accumulation, while CHS, CHI and F3H were upregulated before accumulation. When sprouts were moved into the dark from UV-B, the anthocyanin accumulation did not stop immediately. By contrast, anthocyanin accumulated continuously for more than 12 h in the dark, which was further supported by the significantly higher PAL activity monitored at 24 h after irradiation. Similarly, the transcript levels of anthocyanin biosynthesis-related genes were much higher over 6 h after 12 h UV-B irradiation. CONCLUSION: UV-B-induced anthocyanin accumulation continues in the dark after irradiation, which was supported by unfading PAL activity and high levels of biosynthesis-related genes. This will provide evidence to produce high-quality sprouts with more anthocyanins but less energy wastage in practice.
Asunto(s)
Antocianinas/biosíntesis , Raphanus , Rayos Ultravioleta , Humanos , Hipocótilo/metabolismoRESUMEN
Gastric cancer is a common malignant tumor with a high mortality rate. Abnormal APOBEC3B (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B) expression increases tumor susceptibility. However, the exact molecular mechanism of APOBEC3B expression in the development of gastric cancer is still unknown. We investigated the effect of APOBEC3B on the malignant biological behavior of gastric cancer cells and discussed the role of APOBEC3B in the development and progression of gastric cancer. APOBEC3B protein levels were measured in 161 gastric cancer samples using western blotting and immunohistochemistry. Both in vitro and in vivo assays were performed, and molecules were analyzed using bioinformatics analysis and western blotting. APOBEC3B was overexpressed in gastric cancer. Moreover, APOBEC3B significantly enhanced cell proliferation in vitro and tumorigenicity in vivo. Regarding the underlying mechanism, APOBEC3B promoted the proliferation of gastric cancer cells by upregulating P53, MCM2 (minichromosome maintenance protein 2), and cyclin D1. Our results suggest that APOBEC3B is involved in cancer progression, providing a new theoretical basis for the prevention and treatment of gastric cancer.
RESUMEN
Quinoa (Chenopodium quinoa Willd) sprouts are rich in bioactive compounds that offer numerous health benefits. However, limited research exists on their cultivation, nutritional value, and processing potential. This study compared the nutritional composition and antioxidant activity of quinoa sprouts from different varieties at various time points. Results showed a general increase in most nutrients over time. At the 24 h mark, JQ-W3 exhibited a 17.77% increase in leucine, 1.68 times higher than in eggs, along with a 6.11-fold elevation in GABA content. JQ-B1 exhibited the preeminent antioxidant potency composite (APC) score. Saponins, known for their bitter taste, decreased at 12 h but returned to original levels by 24 h. Based on nutritional components and saponin content, 24 h sprouted black quinoa JQ-B1 and white quinoa JQ-W3 were selected, providing a basis for quinoa sprout development in the food industry. These findings contribute to the understanding and utilization of quinoa sprouts.
RESUMEN
Soybean sprouts constitute a significant segment of the vegetable market due to their nutritional richness, particularly in various flavonoids, which contribute to numerous health benefits. The augmentation of the flavonoid content in soybean sprouts is pivotal for enhancing their economic value. While research has established the potential of blue light in promoting the synthesis of anthocyanins, a subclass of flavonoids known for their health advantages, the precise regulatory mechanisms remain elusive. In this study, we identified a notable upregulation of an R2R3 type MYB transcription factor, GmMYB114, in response to blue light exposure, exhibiting a significant positive correlation with anthocyanin accumulation in soybean sprouts. The functional role of GmMYB114 was validated in soybean hairy roots, wherein its overexpression substantially augmented anthocyanin synthesis. Further investigations employing yeast one-hybrid (Y1H), dual-luciferase reporter (LUC), and GUS assays revealed that GmMYB114 indirectly influences anthocyanin synthesis as it does not directly bind to the promoters of anthocyanin synthesis genes to activate their expression. These findings contribute to elucidating the mechanism underlying blue light-mediated enhancement of anthocyanin synthesis in soybean sprouts, offering valuable insights for harnessing molecular technologies to obtain anthocyanin-enriched soybean sprouts.
RESUMEN
Mycoplasma pneumoniae causes respiratory tract infections, affecting both children and adults, with varying degrees of severity ranging from mild to life-threatening. In recent years, a new class of regulatory RNAs called long non-coding RNAs (lncRNAs) has been discovered to play crucial roles in regulating gene expression in the host. Research on lncRNAs has greatly expanded our understanding of cellular functions involving RNAs, and it has significantly increased the range of functions of lncRNAs. In lung cancer, transcripts associated with lncRNAs have been identified as regulators of airway and lung inflammation in a process involving protein complexes. An excessive immune response and antibacterial immunity are closely linked to the pathogenesis of M. pneumoniae. The relationship between lncRNAs and M. pneumoniae infection largely involves lncRNAs that participate in antibacterial immunity. This comprehensive review aimed to examine the dysregulation of lncRNAs during M. pneumoniae infection, highlighting the latest advancements in our understanding of the biological functions and molecular mechanisms of lncRNAs in the context of M. pneumoniae infection and indicating avenues for investigating lncRNAs-related therapeutic targets.