Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Dev Res ; 83(2): 432-446, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34636432

RESUMEN

Paeonol exerted an effect in lung cancer, but the underlying mechanism remained vague. In this research, we assessed the effects of Paeonol and microRNA (miR)-126-5p on the viability, migration, invasion, and epithelial-mesenchymal transition (EMT) of lung cancer cells. Lung cancer cells and BEAS-2B cells were treated with Paeonol, and viability was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The migration and invasion of lung cancer cells after treatment with Paeonol at 40 µg/mL or 80 µg/mL were detected by wound healing assay and Transwell assay, respectively. The effects of Paeonol on transforming growth factor-ß1 (TGF-ß1)-induced EMT and relative expressions of EMT-related proteins were determined using Western blot. The target gene of miR-126-5p and the binding sites between them were predicted by TargetScan, and confirmed using dual-luciferase reporter assay. Relative expressions of miR-126-5p, its target gene and EMT-related proteins were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Rescue assay was performed to analyze the relation between Paeonol and miR-126-5p. Paeonol down-regulated cell viability and inhibited migration, invasion and TGF-ß1-induced EMT while up-regulating miR-126-5p expression in lung cancer cells as the dose increased. However, miR-126-5p inhibitor could reverse the effect of Paeonol. ZEB2 was the target gene of miR-126-5p, and silencing ZEB2 expression reversed the effects of miR-126-5p downregulation. Paeonol also regulated the expression of ZEB2 in lung cancer cells, and this regulation depends on the regulation of miR-126-5p. Paeonol inhibits human lung cancer cell viability and metastasis via the miR-126-5p/ZEB2 axis, and could be adopted as a potential agent for lung cancer treatment.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Acetofenonas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Factor de Crecimiento Transformador beta1/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo
2.
Plants (Basel) ; 13(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256727

RESUMEN

Many customers prefer goji berry pulp, well-known for its high nutritional content, over fresh goji berries. However, there is limited research on its sensory lexicon and distinctive flavor compounds. This study focused on developing a sensory lexicon for goji berry pulp and characterizing its aroma by sensory and instrumental analysis. Sensory characteristics of goji berry pulp were evaluated by our established lexicon. A total of 83 aromatic compounds in goji berry pulp were quantified using HS-SPME-GC-Orbitrap-MS. By employing OAV in combination, we identified 17 aroma-active compounds as the key ingredients in goji berry pulp. Then, we identified the potentially significant contributors to the aroma of goji berry pulp by combining principal component analysis and partial least squares regression (PLSR) models of aroma compounds and sensory attributes, which included 3-ethylphenol, methyl caprylate, 2-hydroxy-4-methyl ethyl valerate, benzeneacetic acid, ethyl ester, hexanal, (E,Z)-2,6-nonadienal, acetylpyrazine, butyric acid, 2-ethylhexanoic acid, 2-methyl-1-propanol, 1-pentanol, phenylethyl alcohol, and 2-nonanone. This study provides a theoretical basis for improving the quality control and processing technology of goji berry pulp.

3.
Foods ; 12(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174382

RESUMEN

Non-grapefruits with unique sensory properties and potential health benefits provide added value to fruit wine production. This study aimed to explore consumers' fruit wine preferences and descriptors for the varied fruit wines. First, 234 consumers participated in an online survey concerning their preferences for different wines (grape, blueberry, hawthorn, goji, Rosa roxburghii, and apricot). In addition, their attitudes towards general health interests, food neophobia, alcoholic drinks, and sweetness were collected. Grape wine and blueberry wine were the most favored wines, and goji wine was the least liked fruit wine sample. Moreover, 89 consumers were invited to evaluate 10 commercial fruit wines by using partial projective mapping based on appearance, aroma, and flavor (including taste and mouthfeel) to obtain a comprehensive sensory characterization. Multifactor analysis results showed that consumers could differentiate the fruit wines. Participants preferred fruit wines with "sweet", "sour", and "balanced fragrance", whereas "bitter", "astringent", "deep appearance", and "medicinal fragrance" were not preferred. Attitudes toward health, food neophobia, alcohol, and sweetness had less influence than taste and aroma (sensory attributes) on the preferences for fruit wine products. More frequent self-reported wine usage resulted in higher consumption frequency and liking ratings compared to non-users. Overall, the main factors influencing consumer preference for fruit wines were the sensory characteristics of the products, especially the taste.

4.
J Agric Food Chem ; 70(6): 1971-1983, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35112570

RESUMEN

This paper clarifies the contribution of lactones and volatile phenols to the aroma of nongrape wine. A target method for the simultaneous determination of these two kinds of volatiles in nongrape wines was developed using headspace-solid-phase microextraction (HS-SPME) combined with high-resolution gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap-MS). A high-resolution mass spectrometry database including 12 lactones and 11 volatile phenols was established for qualitative accuracy. Different matrix-matched calibration standards should be prepared for specific samples due to the matrix effects. The method was successfully validated and applied in three nongrape wines. Hawthorn wine contained more lactones (δ/γ-hexalactone, δ/γ-nonalactone, δ/γ-decalactone, γ-undecalactone, δ/γ-dodecalactone, C10 massoia lactone, and whiskey lactone), while blueberry wine contained more volatile phenols (especially 4-vinylguaiacol and 4-ethylguiaiacol). Goji berry wines contained certain concentrations of δ-nonalactone, γ-nonalactone, δ-hexalactone, and 3-ethyl phenol. This study demonstrated that HS-SPME-GC-Orbitrap-MS can be applied for the accurate quantification of trace aroma compounds such as lactones and volatile phenols in fruit wines.


Asunto(s)
Compuestos Orgánicos Volátiles , Vino , Cromatografía de Gases y Espectrometría de Masas , Lactonas/análisis , Odorantes/análisis , Fenoles/análisis , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/análisis , Vino/análisis
5.
Sci Data ; 9(1): 496, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963960

RESUMEN

The overall aroma is an important factor of the sensory quality of fruit wines, which attributed to hundreds of volatile compounds. However, the qualitative determination of trace volatile compounds is considered to be very challenging work. GC-Orbitrap-MS with high resolution and high sensitivity provided more possibilities for the determination of volatile compounds, but without the high-resolution mass spectral library. For accuracy of qualitative determination in fruit wines by GC-Orbitrap-MS, a high-resolution mass spectral library, including 76 volatile compounds, was developed in this study. Not only the HRMS spectrum but also the exact ion fragment, relative abundance, retention indices (RI), CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally) were provided and were shown in a database website (Food Flavor Laboratory, http://foodflavorlab.cn/ ). HRMS library was used to successfully identify the volatile compounds mentioned above in 16 fruit wines (5 blueberry wines, 6 goji berry wines and 5 hawthorn wines). The library was developed as an important basis for further understanding of trace volatile compounds in fruit wines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA