Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(33): e2301926120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552753

RESUMEN

Swine are a primary source for the emergence of pandemic influenza A viruses. The intensification of swine production, along with global trade, has amplified the transmission and zoonotic risk of swine influenza A virus (swIAV). Effective surveillance is essential to uncover emerging virus strains; however gaps remain in our understanding of the swIAV genomic landscape in Southeast Asia. More than 4,000 nasal swabs were collected from pigs in Cambodia, yielding 72 IAV-positive samples by RT-qPCR and 45 genomic sequences. We unmasked the cocirculation of multiple lineages of genetically diverse swIAV of pandemic concern. Genomic analyses revealed a novel European avian-like H1N2 swIAV reassortant variant with North American triple reassortant internal genes, that emerged approximately seven years before its first detection in pigs in 2021. Using phylogeographic reconstruction, we identified south central China as the dominant source of swine viruses disseminated to other regions in China and Southeast Asia. We also identified nine distinct swIAV lineages in Cambodia, which diverged from their closest ancestors between two and 15 B.P., indicating significant undetected diversity in the region, including reverse zoonoses of human H1N1/2009 pandemic and H3N2 viruses. A similar period of cryptic circulation of swIAVs occurred in the decades before the H1N1/2009 pandemic. The hidden diversity of swIAV observed here further emphasizes the complex underlying evolutionary processes present in this region, reinforcing the importance of genomic surveillance at the human-swine interface for early warning of disease emergence to avoid future pandemics.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Porcinos , Animales , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Virus Reordenados/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Gripe Humana/epidemiología , Virus de la Influenza A/genética , Genómica , Filogenia , Cambodia/epidemiología , Enfermedades de los Porcinos/epidemiología
2.
Proc Natl Acad Sci U S A ; 117(1): 619-628, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31843889

RESUMEN

Influenza B viruses have circulated in humans for over 80 y, causing a significant disease burden. Two antigenically distinct lineages ("B/Victoria/2/87-like" and "B/Yamagata/16/88-like," termed Victoria and Yamagata) emerged in the 1970s and have cocirculated since 2001. Since 2015 both lineages have shown unusually high levels of epidemic activity, the reasons for which are unclear. By analyzing over 12,000 influenza B virus genomes, we describe the processes enabling the long-term success and recent resurgence of epidemics due to influenza B virus. We show that following prolonged diversification, both lineages underwent selective sweeps across the genome and have subsequently taken alternate evolutionary trajectories to exhibit epidemic dominance, with no reassortment between lineages. Hemagglutinin deletion variants emerged concomitantly in multiple Victoria virus clades and persisted through epistatic mutations and interclade reassortment-a phenomenon previously only observed in the 1970s when Victoria and Yamagata lineages emerged. For Yamagata viruses, antigenic drift of neuraminidase was a major driver of epidemic activity, indicating that neuraminidase-based vaccines and cross-reactivity assays should be employed to monitor and develop robust protection against influenza B morbidity and mortality. Overall, we show that long-term diversification and infrequent selective sweeps, coupled with the reemergence of hemagglutinin deletion variants and antigenic drift of neuraminidase, are factors that contributed to successful circulation of diverse influenza B clades. Further divergence of hemagglutinin variants with poor cross-reactivity could potentially lead to circulation of 3 or more distinct influenza B viruses, further complicating influenza vaccine formulation and highlighting the urgent need for universal influenza vaccines.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Epidemias/prevención & control , Evolución Molecular , Virus de la Influenza B/genética , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/prevención & control , Variación Genética , Genoma Viral/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza B/inmunología , Virus de la Influenza B/patogenicidad , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/genética , Neuraminidasa/inmunología , Selección Genética/inmunología
3.
Lancet ; 396(10251): 603-611, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32822564

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with a 382-nucleotide deletion (∆382) in the open reading frame 8 (ORF8) region of the genome have been detected in Singapore and other countries. We investigated the effect of this deletion on the clinical features of infection. METHODS: We retrospectively identified patients who had been screened for the ∆382 variant and recruited to the PROTECT study-a prospective observational cohort study conducted at seven public hospitals in Singapore. We collected clinical, laboratory, and radiological data from patients' electronic medical records and serial blood and respiratory samples taken during hospitalisation and after discharge. Individuals infected with the ∆382 variant were compared with those infected with wild-type SARS-CoV-2. Exact logistic regression was used to examine the association between the infection groups and the development of hypoxia requiring supplemental oxygen (an indicator of severe COVID-19, the primary endpoint). Follow-up for the study's primary endpoint is completed. FINDINGS: Between Jan 22 and March 21, 2020, 278 patients with PCR-confirmed SARS-CoV-2 infection were screened for the ∆382 deletion and 131 were enrolled onto the study, of whom 92 (70%) were infected with the wild-type virus, ten (8%) had a mix of wild-type and ∆382-variant viruses, and 29 (22%) had only the ∆382 variant. Development of hypoxia requiring supplemental oxygen was less frequent in the ∆382 variant group (0 [0%] of 29 patients) than in the wild-type only group (26 [28%] of 92; absolute difference 28% [95% CI 14-28]). After adjusting for age and presence of comorbidities, infection with the ∆382 variant only was associated with lower odds of developing hypoxia requiring supplemental oxygen (adjusted odds ratio 0·07 [95% CI 0·00-0·48]) compared with infection with wild-type virus only. INTERPRETATION: The ∆382 variant of SARS-CoV-2 seems to be associated with a milder infection. The observed clinical effects of deletions in ORF8 could have implications for the development of treatments and vaccines. FUNDING: National Medical Research Council Singapore.


Asunto(s)
Infecciones por Coronavirus/virología , Eliminación de Gen , Genoma Viral/genética , Neumonía Viral/virología , Adulto , Anciano , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/epidemiología , Humanos , Hipoxia/etiología , Hipoxia/terapia , Persona de Mediana Edad , Sistemas de Lectura Abierta , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/epidemiología , Estudios Prospectivos , Terapia Respiratoria , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Singapur/epidemiología , Replicación Viral
4.
J Infect Dis ; 221(4): 566-577, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31563943

RESUMEN

BACKGROUND: A number of serious human adenovirus (HAdV) outbreaks have been recently reported: HAdV-B7 (Israel, Singapore, and USA), HAdV-B7d (USA and China), HAdV-D8, -D54, and -C2 (Japan), HAdV-B14p1 (USA, Europe, and China), and HAdV-B55 (China, Singapore, and France). METHODS: To understand the epidemiology of HAdV infections in Singapore, we studied 533 HAdV-positive clinical samples collected from 396 pediatric and 137 adult patients in Singapore from 2012 to 2018. Genome sequencing and phylogenetic analyses were performed to identify HAdV genotypes, clonal clusters, and recombinant or novel HAdVs. RESULTS: The most prevalent genotypes identified were HAdV-B3 (35.6%), HAdV-B7 (15.4%), and HAdV-E4 (15.2%). We detected 4 new HAdV-C strains and detected incursions with HAdV-B7 (odds ratio [OR], 14.6; 95% confidence interval [CI], 4.1-52.0) and HAdV-E4 (OR, 13.6; 95% CI, 3.9-46.7) among pediatric patients over time. In addition, immunocompromised patients (adjusted OR [aOR], 11.4; 95% CI, 3.8-34.8) and patients infected with HAdV-C2 (aOR, 8.5; 95% CI, 1.5-48.0), HAdV-B7 (aOR, 3.7; 95% CI, 1.2-10.9), or HAdV-E4 (aOR, 3.2; 95% CI, 1.1-8.9) were at increased risk for severe disease. CONCLUSIONS: Singapore would benefit from more frequent studies of clinical HAdV genotypes to identify patients at risk for severe disease and help guide the use of new antiviral therapies, such as brincidofovir, and potential administration of HAdV 4 and 7 vaccine.


Asunto(s)
Infecciones por Adenovirus Humanos/diagnóstico , Infecciones por Adenovirus Humanos/epidemiología , Adenovirus Humanos/genética , Pruebas Diagnósticas de Rutina/métodos , Brotes de Enfermedades/prevención & control , Genotipo , Infecciones del Sistema Respiratorio/epidemiología , Infecciones por Adenovirus Humanos/tratamiento farmacológico , Infecciones por Adenovirus Humanos/prevención & control , Vacunas contra el Adenovirus/inmunología , Vacunas contra el Adenovirus/uso terapéutico , Adenovirus Humanos/inmunología , Adolescente , Adulto , Antivirales/uso terapéutico , Niño , Preescolar , ADN Viral/genética , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Filogenia , Estudios Prospectivos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/virología , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad , Singapur/epidemiología , Secuenciación Completa del Genoma
5.
6.
Br Med Bull ; 132(1): 81-95, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31848585

RESUMEN

BACKGROUND: Human infections with avian influenza viruses (AIV) represent a persistent public health threat. The principal risk factor governing human infection with AIV is from direct contact with infected poultry and is primarily observed in Asia and Egypt where live-bird markets are common. AREAS OF AGREEMENT: Changing patterns of virus transmission and a lack of obvious disease manifestations in avian species hampers early detection and efficient control of potentially zoonotic AIV. AREAS OF CONTROVERSY: Despite extensive studies on biological and environmental risk factors, the exact conditions required for cross-species transmission from avian species to humans remain largely unknown. GROWING POINTS: The development of a universal ('across-subtype') influenza vaccine and effective antiviral therapeutics are a priority. AREAS TIMELY FOR DEVELOPING RESEARCH: Sustained virus surveillance and collection of ecological and physiological parameters from birds in different environments is required to better understand influenza virus ecology and identify risk factors for human infection.


Asunto(s)
Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Animales , Antivirales/uso terapéutico , Aves , Brotes de Enfermedades , Susceptibilidad a Enfermedades , Humanos , Virus de la Influenza A/clasificación , Vacunas contra la Influenza , Gripe Aviar/terapia , Gripe Aviar/transmisión , Gripe Humana/terapia , Gripe Humana/transmisión , Factores de Riesgo , Zoonosis/epidemiología , Zoonosis/terapia , Zoonosis/transmisión
7.
J Virol ; 90(21): 9674-9682, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27535050

RESUMEN

Avian influenza virus (AIV) surveillance in Antarctica during 2013 revealed the prevalence of evolutionarily distinct influenza viruses of the H11N2 subtype in Adélie penguins. Here we present results from the continued surveillance of AIV on the Antarctic Peninsula during 2014 and 2015. In addition to the continued detection of H11 subtype viruses in a snowy sheathbill during 2014, we isolated a novel H5N5 subtype virus from a chinstrap penguin during 2015. Gene sequencing and phylogenetic analysis revealed that the H11 virus detected in 2014 had a >99.1% nucleotide similarity to the H11N2 viruses isolated in 2013, suggesting the continued prevalence of this virus in Antarctica over multiple years. However, phylogenetic analysis of the H5N5 virus showed that the genome segments were recently introduced to the continent, except for the NP gene, which was similar to that in the endemic H11N2 viruses. Our analysis indicates geographically diverse origins for the H5N5 virus genes, with the majority of its genome segments derived from North American lineage viruses but the neuraminidase gene derived from a Eurasian lineage virus. In summary, we show the persistence of AIV lineages in Antarctica over multiple years, the recent introduction of gene segments from diverse regions, and reassortment between different AIV lineages in Antarctica, which together significantly increase our understanding of AIV ecology in this fragile and pristine environment. IMPORTANCE: Analysis of avian influenza viruses (AIVs) detected in Antarctica reveals both the relatively recent introduction of an H5N5 AIV, predominantly of North American-like origin, and the persistence of an evolutionarily divergent H11 AIV. These data demonstrate that the flow of viruses from North America may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within Antarctica. The future introduction of AIVs from North America into the Antarctic Peninsula is of particular concern given that highly pathogenic H5Nx viruses have recently been circulating among wild birds in parts of Canada and the Unites States following the movement of these viruses from Eurasia via migratory birds. The introduction of a highly pathogenic influenza virus in penguin colonies within Antarctica might have devastating consequences.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Aves/virología , Canadá , Genes Virales/genética , Variación Genética/genética , Filogenia , Spheniscidae/virología
8.
J Virol ; 89(18): 9689-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26136576

RESUMEN

Influenza B virus causes significant disease but remains understudied in tropical regions. We sequenced 72 influenza B viruses collected in Kuala Lumpur, Malaysia, from 1995 to 2008. The predominant circulating lineage (Victoria or Yamagata) changed every 1 to 3 years, and these shifts were associated with increased incidence of influenza B. We also found poor lineage matches with recommended influenza virus vaccine strains. While most influenza B virus lineages in Malaysia were short-lived, one circulated for 3 to 4 years.


Asunto(s)
Evolución Molecular , Virus de la Influenza B/genética , Gripe Humana/genética , Secuencia de Bases , Femenino , Humanos , Gripe Humana/epidemiología , Malasia/epidemiología , Masculino , Datos de Secuencia Molecular
9.
PLoS Pathog ; 9(8): e1003570, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009503

RESUMEN

Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.


Asunto(s)
Migración Animal , Charadriiformes/virología , Virus de la Influenza A , Gripe Aviar/epidemiología , Modelos Biológicos , Animales , Humanos , Gripe Aviar/transmisión , América del Norte/epidemiología
10.
J Virol ; 87(18): 10182-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864623

RESUMEN

Influenza A H10N7 virus with a hemagglutinin gene of North American origin was detected in Australian chickens and poultry abattoir workers in New South Wales, Australia, in 2010 and in chickens in Queensland, Australia, on a mixed chicken and domestic duck farm in 2012. We investigated their genomic origins by sequencing full and partial genomes of H10 viruses isolated from wild aquatic birds and poultry in Australia and analyzed them with all available avian influenza virus sequences from Oceania and representative viruses from North America and Eurasia. Our analysis showed that the H10N7 viruses isolated from poultry were similar to those that have been circulating since 2009 in Australian aquatic birds and that their initial transmission into Australia occurred during 2007 and 2008. The H10 viruses that appear to have developed endemicity in Australian wild aquatic birds were derived from several viruses circulating in waterfowl along various flyways. Their hemagglutinin gene was derived from aquatic birds in the western states of the United States, whereas the neuraminidase was closely related to that from viruses previously detected in waterfowl in Japan. The remaining genes were derived from Eurasian avian influenza virus lineages. Our analysis of virological data spanning 40 years in Oceania indicates that the long-term evolutionary dynamics of avian influenza viruses in Australia may be determined by climatic changes. The introduction and long-term persistence of avian influenza virus lineages were observed during periods with increased rainfall, whereas bottlenecks and extinction were observed during phases of widespread decreases in rainfall. These results extend our understanding of factors affecting the dynamics of avian influenza and provide important considerations for surveillance and disease control strategies.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Australia/epidemiología , Aves , Análisis por Conglomerados , Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/genética , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , Aves de Corral , ARN Viral/genética , Análisis de Secuencia de ADN
11.
BMC Microbiol ; 13: 24, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23379917

RESUMEN

BACKGROUND: The oral spirochete bacterium Treponema denticola is associated with both the incidence and severity of periodontal disease. Although the biological or phenotypic properties of a significant number of T. denticola isolates have been reported in the literature, their genetic diversity or phylogeny has never been systematically investigated. Here, we describe a multilocus sequence analysis (MLSA) of 20 of the most highly studied reference strains and clinical isolates of T. denticola; which were originally isolated from subgingival plaque samples taken from subjects from China, Japan, the Netherlands, Canada and the USA. RESULTS: The sequences of the 16S ribosomal RNA gene, and 7 conserved protein-encoding genes (flaA, recA, pyrH, ppnK, dnaN, era and radC) were successfully determined for each strain. Sequence data was analyzed using a variety of bioinformatic and phylogenetic software tools. We found no evidence of positive selection or DNA recombination within the protein-encoding genes, where levels of intraspecific sequence polymorphism varied from 18.8% (flaA) to 8.9% (dnaN). Phylogenetic analysis of the concatenated protein-encoding gene sequence data (ca. 6,513 nucleotides for each strain) using Bayesian and maximum likelihood approaches indicated that the T. denticola strains were monophyletic, and formed 6 well-defined clades. All analyzed T. denticola strains appeared to have a genetic origin distinct from that of 'Treponema vincentii' or Treponema pallidum. No specific geographical relationships could be established; but several strains isolated from different continents appear to be closely related at the genetic level. CONCLUSIONS: Our analyses indicate that previous biological and biophysical investigations have predominantly focused on a subset of T. denticola strains with a relatively narrow range of genetic diversity. Our methodology and results establish a genetic framework for the discrimination and phylogenetic analysis of T. denticola isolates, which will greatly assist future biological and epidemiological investigations involving this putative 'periodontopathogen'.


Asunto(s)
Variación Genética , Tipificación de Secuencias Multilocus , Treponema denticola/clasificación , Treponema denticola/genética , Asia , Proteínas Bacterianas/genética , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Humanos , Datos de Secuencia Molecular , Países Bajos , América del Norte , Filogenia , ARN Ribosómico 16S/genética , Treponema denticola/aislamiento & purificación
12.
One Health ; 16: 100529, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363265

RESUMEN

Orthonairovirus is a genus of viruses in the family Nairoviridae, order Bunyavirales, with a segmented circular RNA genome. They typically infect birds and mammals and are primarily transmitted by ectoparasites such as ticks. Four of nine Orthonairovirus genogroups can infect humans, with Crimean-Congo hemorrhagic fever virus infections displaying case fatality rates up to 40%. Here, we discover and describe a novel Orthonairovirus as Cencurut virus (CENV). CENV was detected in 34 of 37 Asian house shrews (Suncus murinus) sampled in Singapore and in a nymphal Amblyomma helvolum tick collected from an infected shrew. Pairwise comparison of CENV S, M, and L segments had 95.0 to 100% nucleotide and 97.5 to 100% amino acid homology within CENV genomes, suggesting a diverse viral population. Phylogenetic analysis of the individual gene segments showed that CENV is related to Erve, Lamgora, Lamusara, and Thiafora viruses, with only 49.0 to 58.2% nucleotide and 41.7 to 61.1% amino acid homology, which has previously been detected in other shrew species from France, Gabon, and Senegal respectively. The high detection frequency suggests that CENV is endemic among S. murinus populations in Singapore. The discovery of CENV, from a virus family with known zoonotic potential, underlines the importance of surveillance of synanthropic small mammals that are widely distributed across Southeast Asia.

13.
Microbiol Spectr ; 11(3): e0348322, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199653

RESUMEN

Bats are the reservoir for numerous human pathogens, including coronaviruses. Despite many coronaviruses having descended from bat ancestors, little is known about virus-host interactions and broader evolutionary history involving bats. Studies have largely focused on the zoonotic potential of coronaviruses with few infection experiments conducted in bat cells. To determine genetic changes derived from replication in bat cells and possibly identify potential novel evolutionary pathways for zoonotic virus emergence, we serially passaged six human 229E isolates in a newly established Rhinolophus lepidus (horseshoe bat) kidney cell line. Here, we observed extensive deletions within the spike and open reading frame 4 (ORF4) genes of five 229E viruses after passaging in bat cells. As a result, spike protein expression and infectivity of human cells was lost in 5 of 6 viruses, but the capability to infect bat cells was maintained. Only viruses that expressed the spike protein could be neutralized by 229E spike-specific antibodies in human cells, whereas there was no neutralizing effect on viruses that did not express the spike protein inoculated on bat cells. However, one isolate acquired an early stop codon, abrogating spike expression but maintaining infection in bat cells. After passaging this isolate in human cells, spike expression was restored due to acquisition of nucleotide insertions among virus subpopulations. Spike-independent infection of human coronavirus 229E may provide an alternative mechanism for viral maintenance in bats that does not rely on the compatibility of viral surface proteins and known cellular entry receptors. IMPORTANCE Many viruses, including coronaviruses, originated from bats. Yet, we know little about how these viruses switch between hosts and enter human populations. Coronaviruses have succeeded in establishing in humans at least five times, including endemic coronaviruses and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In an approach to identify requirements for host switches, we established a bat cell line and adapted human coronavirus 229E viruses by serial passage. The resulting viruses lost their spike protein but maintained the ability to infect bat cells, but not human cells. Maintenance of 229E viruses in bat cells appears to be independent of a canonical spike receptor match, which in turn might facilitate cross-species transmission in bats.


Asunto(s)
COVID-19 , Quirópteros , Coronavirus Humano 229E , Animales , Humanos , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo
14.
One Health Outlook ; 5(1): 19, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111066

RESUMEN

BACKGROUND: Jeilongvirus was proposed as a new genus within the Paramyxoviridae in 2018. The advancement in metagenomic approaches has encouraged multiple reports of Jeilongvirus detection following the initial species discovery, enriching species diversity and host range within the genus. However, Jeilongvirus remains understudied in Singapore, where interfaces between humans and small mammals are plentiful. METHODS: Here, we utilized metagenomic sequencing for the exploration of viral diversity in small mammal tissues. Upon discovery of Jeilongvirus, molecular screening and full genome sequencing was conducted, with the data used to conduct statistical modelling and phylogenetic analysis. RESULTS: We report the presence of Jeilongvirus in four species of Singapore wild small mammals, detected in their spleen and kidney. We show that full genomes of three Singapore Jeilongvirus encode for eight ORFs including the small hydrophobic and transmembrane proteins. All generated genomes cluster phylogenetically within the small mammal subclade, but share low genetic similarity with representative Jeilongvirus species. Statistical modelling showed no spatial or temporal patterns and differences among species, life history traits and habitat types. CONCLUSIONS: This study serves as a basis for understanding dynamics between Jeilongvirus and small mammal hosts in Singapore by displaying the virus generalist nature. In addition, the initial detection can help to invoke improved routine surveillance and detection of circulating pathogens in synanthropic hosts.

15.
Virus Evol ; 9(1): veac121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36654682

RESUMEN

The first case of coronavirus disease 2019 (COVID-19) in Cambodia was confirmed on 27 January 2020 in a traveller from Wuhan. Cambodia subsequently implemented strict travel restrictions, and although intermittent cases were reported during the first year of the COVID-19 pandemic, no apparent widespread community transmission was detected. Investigating the routes of severe acute respiratory coronavirus 2 (SARS-CoV-2) introduction into the country was critical for evaluating the implementation of public health interventions and assessing the effectiveness of social control measures. Genomic sequencing technologies have enabled rapid detection and monitoring of emerging variants of SARS-CoV-2. Here, we detected 478 confirmed COVID-19 cases in Cambodia between 27 January 2020 and 14 February 2021, 81.3 per cent in imported cases. Among them, fifty-four SARS-CoV-2 genomes were sequenced and analysed along with representative global lineages. Despite the low number of confirmed cases, we found a high diversity of Cambodian viruses that belonged to at least seventeen distinct PANGO lineages. Phylogenetic inference of SARS-CoV-2 revealed that the genetic diversity of Cambodian viruses resulted from multiple independent introductions from diverse regions, predominantly, Eastern Asia, Europe, and Southeast Asia. Most cases were quickly isolated, limiting community spread, although there was an A.23.1 variant cluster in Phnom Penh in November 2020 that resulted in a small-scale local transmission. The overall low incidence of COVID-19 infections suggests that Cambodia's early containment strategies, including travel restrictions, aggressive testing and strict quarantine measures, were effective in preventing large community outbreaks of COVID-19.

16.
Transbound Emerg Dis ; 69(6): 3917-3925, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36382687

RESUMEN

Bats are important reservoirs for alpha- and beta-coronaviruses. Coronaviruses (CoV) have been detected in pteropodid bats from several Southeast Asian countries, but little is known about coronaviruses in the Indonesian archipelago in proportion to its mammalian biodiversity. In this study, we screened pooled faecal samples from the Indonesian colonies of Pteropus vampyrus with unbiased next-generation sequencing. Bat CoVs related to Rousettus leschenaultii CoV HKU9 and Eidolon helvum CoV were detected. The 121 faecal samples were further screened using a conventional hemi-nested pan-coronavirus PCR assay. Three positive samples were successfully sequenced, and phylogenetic reconstruction revealed the presence of alpha- and beta-coronaviruses. CoVs belonging to the subgenera Nobecovirus, Decacovirus and Pedacovirus were detected in a single P. vampyrus roost. This study expands current knowledge of coronavirus diversity in Indonesian flying foxes, highlighting the need for longitudinal surveillance of colonies as continuing urbanization and deforestation heighten the risk of spillover events.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus , Animales , Coronavirus/genética , Indonesia/epidemiología , Filogenia , Infecciones por Coronavirus/veterinaria
17.
Microbiol Spectr ; 10(3): e0044922, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35638834

RESUMEN

Bats are considered the natural reservoir of numerous emerging viruses such as severe acute respiratory syndrome coronaviruses (SARS-CoVs). There is a need for immortalized bat cell lines to culture and investigate the pathogenicity, replication kinetics, and evolution of emerging coronaviruses. We illustrate the susceptibility and permissiveness of a spontaneously immortalized kidney cell line (Rhileki) from Blyth's horseshoe bat (R. lepidus) to SARS-CoV-2 virus, including clinical isolates, suggesting a possible virus-host relationship. We were able to observe limited SARS-CoV-2 replication in Rhileki cells compared with simian VeroE6 cells. Slower viral replication in Rhileki cells was indicated by higher ct values (RT-PCR) at later time points of the viral culture and smaller foci (foci forming assay) compared with those of VeroE6 cells. With this study we demonstrate that SARS-CoV-2 replication is not restricted to R. sinicus and could include more Rhinolophus species. The establishment of a continuous Rhinolophus lepidus kidney cell line allows further characterization of SARS-CoV-2 replication in Rhinolophus bat cells, as well as isolation attempts of other bat-borne viruses. IMPORTANCE The current COVID-19 pandemic demonstrates the significance of bats as reservoirs for severe viral diseases. However, as bats are difficult to establish as animal models, bat cell lines can be an important proxy for the investigation of bat-virus interactions and the isolation of bat-borne viruses. This study demonstrates the susceptibility and permissiveness of a continuous kidney bat cell line to SARS-CoV-2. This does not implicate the bat species Rhinolophus lepidus, where these cells originate from, as a potential reservoir, but emphasizes the usefulness of this cell line for further characterization of SARS-CoV-2. This can lead to a better understanding of emerging viruses that could cause significant disease in humans and domestic animals.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , Riñón , Pandemias , Filogenia , SARS-CoV-2
18.
New Phytol ; 189(4): 1170-1184, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21128943

RESUMEN

• Acyl-CoA-binding proteins (ACBPs) show conservation in an acyl-CoA-binding domain (ACB domain) which binds acyl-CoA esters. Previous studies on plant ACBPs focused on eudicots, Arabidopsis and Brassica. Here, we report on the phylogeny and characterization of the ACBP family from the monocot Oryza sativa (rice). • Phylogenetic analyses were conducted using 16 plant genomes. Expression profiles of rice ACBPs under normal growth, as well as biotic and abiotic stress conditions, were examined by quantitative real-time reverse-transcription polymerase chain reactions. In vitro acyl-CoA-binding assays were conducted using recombinant (His)6-tagged ACBPs. • The ACBP family diversified as land plants evolved. Classes I and IV show lineage-specific gene expansion. Classes II and III are closely related phylogenetically. As in the eudicot Arabidopsis, six genes (designated OsACBP1 to OsACBP6) encode rice ACBPs, but their distribution into various classes differed from Arabidopsis. Rice ACBP mRNAs showed ubiquitous expression and OsACBP4, OsACBP5 and OsACBP6 were stress-responsive. All recombinant rice ACBPs bind [¹4C]linolenoyl-CoA besides having specific substrates. • Phylogeny, gene expression and biochemical analyses suggest that paralogues within and across classes are not redundant proteins. In addition to performing conserved basal functions, multidomain rice ACBPs appear to be associated with stress responses.


Asunto(s)
Inhibidor de la Unión a Diazepam/metabolismo , Familia de Multigenes/genética , Oryza/genética , Filogenia , Inhibidor de la Unión a Diazepam/química , Ésteres/metabolismo , Dosificación de Gen/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histidina/metabolismo , Cinética , Oligopéptidos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Microbiol Spectr ; 9(2): e0130921, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34585974

RESUMEN

Highly pathogenic avian influenza (HPAI) H5 viruses have posed a substantial pandemic threat through repeated human infection since their emergence in China in 1996. Nationwide control measures, including vaccination of poultry, were implemented in 2005, leading to a sharp reduction in H5N1 virus outbreaks. In 2008, novel non-N1 subtype (H5Nx) viruses emerged, gradually replacing the dominant H5N1 subtype and causing global outbreaks. The cause of this major shift in the ecology of HPAI H5 viruses remains unknown. Here, we show that major H5N1 virus lineages underwent population bottlenecks in 2006, followed by a recovery in virus populations between 2007 and 2009. Our analyses indicate that control measures, not competition from H5Nx viruses, were responsible for the H5N1 decline, with an H5N1 lineage capable of infecting poultry and wild birds experiencing a less severe population bottleneck due to circulation in unaffected wild birds. We show that H5Nx viruses emerged during the successful suppression of H5N1 virus populations in poultry, providing an opportunity for antigenically distinct H5Nx viruses to propagate. Avian influenza vaccination programs would benefit from universal vaccines targeting a wider diversity of influenza viruses to prevent the emergence of novel subtypes. IMPORTANCE A major shift in the ecology of highly pathogenic avian influenza (HPAI) H5 viruses occurred from 2008 to 2014, when viruses with non-N1 neuraminidase genes (termed H5Nx viruses) emerged and caused global H5 virus outbreaks. Here, we demonstrate that nationwide control measures, including vaccination in China, successfully suppressed H5N1 populations in poultry, providing an opportunity for antigenically distinct H5Nx viruses to emerge. In particular, we show that the widespread use of H5N1 vaccines likely conferred a fitness advantage to H5Nx viruses due to the antigenic mismatch of the neuraminidase genes. These results indicate that avian influenza vaccination programs would benefit from universal vaccines that target a wider diversity of influenza viruses to prevent potential emergence of novel subtypes.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Animales , Animales Salvajes/virología , Aves/virología , Pollos/virología , China , Patos/virología , Gansos/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/fisiología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Filogenia , Enfermedades de las Aves de Corral/epidemiología
20.
One Health ; 12: 100218, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33553564

RESUMEN

Astroviruses are a genetically diverse group of viruses that infect a wide range of hosts, including small mammals. Small mammals were trapped at 19 sites across Singapore from November 2011 to May 2014. Pooled oropharyngeal and rectal swabs (n = 518) and large intestine tissue (n = 107) were screened using a PCR to detect the presence of Astrovirus RNA-dependent RNA polymerase (RdRp) gene. Astroviruses were detected in 93 of 625 (14.9%) of samples tested, with eight of 11 species of rats, shrews, and squirrels testing positive. This is the first detection of astroviruses in seven species (Callosciurus notatus, Mus castaneus, Rattus tanezumi, Rattus tiomanicus, Sundamys annandalei, Suncus murinus and Tupaia glis). Phylogenetic analysis of 10 RdRp gene sequences revealed that astroviruses from Singapore small mammals fall in three distinct clades, one that is specific to the common treeshrew (Tupaia glis), and two comprised of multiple species. One of these includes viruses from the cave nectar bat (Eonycteris spelaea), two rodent species, and a squirrel, suggesting that virus spillover from bats to small mammals may have occurred. Our results show an increased host range for astroviruses and highlight their potential for intra- and inter-species transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA