Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(12): 3388-3391, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875627

RESUMEN

We demonstrate an invertible all-optical gate on chip, with the roles of control and signal switchable by slightly adjusting their relative arrival time at the gate. It is based on the quantum Zeno blockade (QZB) driven by sum-frequency generation (SFG) in a periodically poled lithium niobate microring resonator. For two nearly identical nanosecond pulses, the later arriving pulse is modulated by the earlier arriving one, resulting in 2.4 and 3.9 power extinction between the two, respectively, when their peak powers are 1 mW and 2 mW, respectively. Our results, while to be improved and enriched, herald a new, to the best of our knowledge, paradigm of logical gates and circuits for exotic applications.

2.
Opt Lett ; 46(8): 1884-1887, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857095

RESUMEN

Thin-film lithium niobate has emerged as an excellent, multifaceted platform for integrated photonics and opto-electronics, in both classical and quantum domains. We introduce a novel, to the best of our knowledge, dual-capacitor electrode layout for an efficient interface between electrical and optical signals on this platform. It significantly enhances the electro-optical modulation efficiency to an exceptional voltage-length product of 0.64V⋅cm, thereby lowering the required electric power by many times. This technique can boost the performance of growing applications at the interface of integrated electronics and optics, such as microwave photonics, frequency comb generation, and telecommunication transmission.

3.
Opt Lett ; 46(18): 4601, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525057

RESUMEN

In this erratum, we correct the corresponding results of our Letter [Opt. Lett.46, 1884 (2021)OPLEDP0146-959210.1364/OL.419597] due to the wrong impedance setting of the arbitrary waveform generator (AWG). The Letter still represents the significant advance despite the change of results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA