Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 134: 104632, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678406

RESUMEN

ARFGEF1 encodes a guanine exchange factor involved in intracellular vesicle trafficking, and is a candidate gene for childhood genetic epilepsies. To model ARFGEF1 haploinsufficiency observed in a recent Lennox Gastaut Syndrome patient, we studied a frameshift mutation (Arfgef1fs) in mice. Arfgef1fs/+ pups exhibit signs of developmental delay, and Arfgef1fs/+ adults have a significantly decreased threshold to induced seizures but do not experience spontaneous seizures. Histologically, the Arfgef1fs/+ brain exhibits a disruption in the apical lining of the dentate gyrus and altered spine morphology of deep layer neurons. In primary hippocampal neuron culture, dendritic surface and synaptic but not total GABAA receptors (GABAAR) are reduced in Arfgef1fs/+ neurons with an accompanying decrease in the number of GABAAR-containing recycling endosomes in cell body. Arfgef1fs/+ neurons also display differences in the relative ratio of Arf6+:Rab11+:TrfR+ recycling endosomes. Although the GABAAR-containing early endosomes in Arfgef1fs/+ neurons are comparable to wildtype, Arfgef1fs/+ neurons show an increase in the number of GABAAR-containing lysosomes in dendrite and cell body. Together, the altered endosome composition and decreased neuronal surface GABAAR results suggests a mechanism whereby impaired neuronal inhibition leads to seizure susceptibility.


Asunto(s)
Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Convulsiones/metabolismo , Animales , Encéfalo/metabolismo , Preescolar , Factores de Intercambio de Guanina Nucleótido/genética , Haploinsuficiencia , Humanos , Lactante , Síndrome de Lennox-Gastaut/genética , Masculino , Proteínas de la Membrana , Ratones , Ratones Noqueados
2.
Hum Mol Genet ; 21(16): 3655-67, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22641814

RESUMEN

Spontaneous neural activity promotes axon growth in many types of developing neurons, including motoneurons. In motoneurons from a mouse model of spinal muscular atrophy (SMA), defects in axonal growth and presynaptic function correlate with a reduced frequency of spontaneous Ca(2+) transients in axons which are mediated by N-type Ca(2+) channels. To characterize the mechanisms that initiate spontaneous Ca(2+) transients, we investigated the role of voltage-gated sodium channels (VGSCs). We found that low concentrations of the VGSC inhibitors tetrodotoxin (TTX) and saxitoxin (STX) reduce the rate of axon growth in cultured embryonic mouse motoneurons without affecting their survival. STX was 5- to 10-fold more potent than TTX and Ca(2+) imaging confirmed that low concentrations of STX strongly reduce the frequency of spontaneous Ca(2+) transients in somatic and axonal regions. These findings suggest that the Na(V)1.9, a VGSC that opens at low thresholds, could act upstream of spontaneous Ca(2+) transients. qPCR from cultured and laser-microdissected spinal cord motoneurons revealed abundant expression of Na(V)1.9. Na(V)1.9 protein is preferentially localized in axons and growth cones. Suppression of Na(V)1.9 expression reduced axon elongation. Motoneurons from Na(V)1.9(-/-) mice showed the reduced axon growth in combination with reduced spontaneous Ca(2+) transients in the soma and axon terminals. Thus, Na(V)1.9 function appears to be essential for activity-dependent axon growth, acting upstream of spontaneous Ca(2+) elevation through voltage-gated calcium channels (VGCCs). Na(V)1.9 activation could therefore serve as a target for modulating axonal regeneration in motoneuron diseases such as SMA in which presynaptic activity of VGCCs is reduced.


Asunto(s)
Axones/metabolismo , Calcio/metabolismo , Neuronas Motoras/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Conos de Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Atrofia Muscular Espinal/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/genética , Conejos , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Médula Espinal/citología , Médula Espinal/metabolismo , Tetrodotoxina/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
3.
Curr Biol ; 13(19): 1687-96, 2003 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-14521834

RESUMEN

BACKGROUND: Kinesin II-mediated anterograde intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia in various cell types. Kinesin associated protein (KAP) is identified as the non-motor accessory subunit of Kinesin II, but its role in the corresponding motor function is not understood. RESULTS: We show that mutations in the Drosophila KAP (DmKap) gene could eliminate the sensory cilia as well as the sound-evoked potentials of Johnston's organ (JO) neurons. Ultrastructure analysis of these mutants revealed that the ciliary axonemes are absent. Mutations in Klp64D, which codes for a Kinesin II motor subunit in Drosophila, show similar ciliary defects. All these defects are rescued by exclusive expression of DmKAP and KLP64D/KIF3A in the JO neurons of respective mutants. Furthermore, reduced copy number of the DmKap gene was found to enhance the defects of hypomorphic Klp64D alleles. Unexpectedly, however, both the DmKap and the Klp64D mutant adults produce vigorously motile sperm with normal axonemes. CONCLUSIONS: KAP plays an essential role in Kinesin II function, which is required for the axoneme growth and maintenance of the cilia in Drosophila type I sensory neurons. However, the flagellar assembly in Drosophila spermatids does not require Kinesin II and is independent of IFT.


Asunto(s)
Proteínas Portadoras/metabolismo , Cilios/metabolismo , Proteínas de Drosophila/metabolismo , Flagelos/metabolismo , Cinesinas/metabolismo , Neuronas Aferentes/metabolismo , Estimulación Acústica , Animales , Transporte Biológico , Proteínas Portadoras/genética , Cilios/ultraestructura , Drosophila , Proteínas de Drosophila/genética , Potenciales Evocados Auditivos , Flagelos/ultraestructura , Masculino , Microscopía Confocal , Microscopía Electrónica , Mutagénesis , Mutación/genética , Neuronas Aferentes/ultraestructura , Espermatozoides/citología , Espermatozoides/metabolismo , Espermatozoides/fisiología , Transgenes/genética
4.
Nat Neurosci ; 16(4): 407-15, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23416450

RESUMEN

The development of neuronal networks in the neocortex depends on control mechanisms for mitosis and migration that allow newborn neurons to find their accurate position. Multiple mitogens, neurotrophic factors, guidance molecules and their corresponding receptors are involved in this process, but the mechanisms by which these signals are integrated are only poorly understood. We found that TrkB and TrkC, the receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are activated by epidermal growth factor receptor (EGFR) signaling rather than by BDNF or NT-3 in embryonic mouse cortical precursor cells. This transactivation event regulated migration of early neuronal cells to their final position in the developing cortex. Transactivation by EGF led to membrane translocation of TrkB, promoting its signaling responsiveness. Our results provide genetic evidence that TrkB and TrkC activation in early cortical neurons do not depend on BDNF and NT-3, but instead on transactivation by EGFR signaling.


Asunto(s)
Movimiento Celular/fisiología , Factor de Crecimiento Epidérmico/fisiología , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Activación Transcripcional/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Embarazo , Receptor trkB/genética , Receptor trkC/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA