Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 168(9): 2007-2021, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38419374

RESUMEN

Mutations in the human creatine transporter 1 (CRT1/SLC6A8) cause the creatine transporter deficiency syndrome, which is characterized by intellectual disability, epilepsy, autism, and developmental delay. The vast majority of mutations cause protein misfolding and hence reduce cell surface expression. Hence, it is important to understand the molecular machinery supporting folding and export of CRT1 from the endoplasmic reticulum (ER). All other SLC6 members thus far investigated rely on a C-terminal motif for binding the COPII-component SEC24 to drive their ER export; their N-termini are dispensable. Here, we show that, in contrast, in CRT1 the C-terminal ER-export motif is cryptic and it is the N-terminus, which supports ER export. This conclusion is based on the following observations: (i) siRNA-induced depletion of individual SEC24 isoforms revealed that CRT1 relied on SEC24C for ER export. However, mutations of the C-terminal canonical ER-export motif of CRT1 did not impair its cell surface delivery. (ii) Nevertheless, the C-terminal motif of CRT1 was operational in a chimeric protein comprising the serotonin transporter (SERT/SLC6A4) and the C-terminus of CRT1. (iii) Tagging of the N-terminus-but not the C-terminus-with yellow fluorescent protein (YFP) resulted in ER retention. (iv) Serial truncations of the N-terminus showed that removal of ≥51 residues of CRT1 impaired surface delivery, because the truncated CRT1 were confined to the ER. (v) Mutation of P51 to alanine also reduced cell surface delivery of CRT1 and relieved its dependence on SEC24C. Thus, the ER-export motif in the N-terminus of CRT1 overrides the canonical C-terminal motif.


Asunto(s)
Retículo Endoplásmico , Humanos , Retículo Endoplásmico/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Células HEK293 , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Mutación/genética , Animales , Proteínas del Tejido Nervioso
2.
Mol Pharmacol ; 98(3): 250-266, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817461

RESUMEN

In medium-size, spiny striatal neurons of the direct pathway, dopamine D1- and adenosine A1-receptors are coexpressed and are mutually antagonistic. Recently, a mutation in the gene encoding the A1-receptor (A1R), A1R-G279S7.44, was identified in an Iranian family: two affected offspring suffered from early-onset l-DOPA-responsive Parkinson's disease. The link between the mutation and the phenotype is unclear. Here, we explored the functional consequence of the G279S substitution on the activity of the A1-receptor after heterologous expression in HEK293 cells. The mutation did not affect surface expression and ligand binding but changed the susceptibility to heat denaturation: the thermodynamic stability of A1R-G279S7.44 was enhanced by about 2 and 8 K when compared with wild-type A1-receptor and A1R-Y288A7.53 (a folding-deficient variant used as a reference), respectively. In contrast, the kinetic stability was reduced, indicating a lower energy barrier for conformational transitions in A1R-G279S7.44 (73 ± 23 kJ/mol) than in wild-type A1R (135 ± 4 kJ/mol) or in A1R-Y288A7.53 (184 ± 24 kJ/mol). Consistent with this lower energy barrier, A1R-G279S7.44 was more effective in promoting guanine nucleotide exchange than wild-type A1R. We detected similar levels of complexes formed between D1-receptors and wild-type A1R or A1R-G279S7.44 by coimmunoprecipitation and bioluminescence resonance energy transfer. However, lower concentrations of agonist were required for half-maximum inhibition of dopamine-induced cAMP accumulation in cells coexpressing D1-receptor and A1R-G279S7.44 than in those coexpressing wild-type A1R. These observations predict enhanced inhibition of dopaminergic signaling by A1R-G279S7.44 in vivo, consistent with a pathogenic role in Parkinson's disease. SIGNIFICANCE STATEMENT: Parkinson's disease is caused by a loss of dopaminergic input from the substantia nigra to the caudate nucleus and the putamen. Activation of the adenosine A1-receptor antagonizes responses elicited by dopamine D1-receptor. We show that this activity is more pronounced in a mutant version of the A1-receptor (A1R-G279S7.44), which was identified in individuals suffering from early-onset Parkinson's disease.


Asunto(s)
Sustitución de Aminoácidos , Enfermedad de Parkinson/genética , Receptor de Adenosina A1/química , Receptor de Adenosina A1/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Receptor de Adenosina A1/genética , Termodinámica
3.
J Biol Chem ; 292(9): 3603-3613, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28104804

RESUMEN

The serotonin transporter (SERT) and other monoamine transporters operate in either a forward transport mode where the transporter undergoes a full transport cycle or an exchange mode where the transporter seesaws through half-cycles. Amphetamines trigger the exchange mode, leading to substrate efflux. This efflux was proposed to rely on the N terminus, which was suggested to adopt different conformations in the inward facing, outward facing and amphetamine-bound states. This prediction was verified by tryptic digestion of SERT-expressing membranes: in the absence of Na+, the N terminus was rapidly digested. Amphetamine conferred protection against cleavage, suggesting a relay between the conformational states of the hydrophobic core and the N terminus. We searched for a candidate segment that supported the conformational switch by serial truncation removing 22 (ΔN22), 32 (ΔN32), or 42 (ΔN42) N-terminal residues. This did not affect surface expression, inhibitor binding, and substrate influx. However, amphetamine-induced efflux by SERT-ΔN32 or SERT-ΔN42 (but not by SERT-ΔN22) was markedly diminished. We examined the individual steps in the transport cycle by recording transporter-associated currents: the recovery rate of capacitive peak, but not of steady state, currents was significantly lower for SERT-ΔN32 than that of wild type SERT and SERT-ΔN22. Thus, the exchange mode of SERT-ΔN32 was selectively impaired. Our observations show that the N terminus affords the switch between transport modes. The findings are consistent with a model where the N terminus acts as a lever to support amphetamine-induced efflux by SERT.


Asunto(s)
Anfetaminas/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas Bacterianas/química , Biotinilación , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Proteínas Luminiscentes/química , Microscopía Confocal , Neurotransmisores/química , Técnicas de Placa-Clamp , Conformación Proteica , Dominios Proteicos , Serotonina/química , Sodio/química , Tripsina/química
4.
J Biol Chem ; 292(47): 19250-19265, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28972153

RESUMEN

Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-µ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-µ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Drosophila melanogaster/efectos de los fármacos , Ibogaína/análogos & derivados , Mutación , Trastornos Parkinsonianos/tratamiento farmacológico , Sulfonamidas/farmacología , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Humanos , Ibogaína/farmacología , Masculino , Trastornos Parkinsonianos/genética , Transmisión Sináptica
5.
J Biol Chem ; 292(40): 16773-16786, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28842491

RESUMEN

Point mutations in SLC6 transporters cause misfolding, which can be remedied by pharmacochaperones. The serotonin transporter (SERT/SLC6A4) has a rich pharmacology including inhibitors, releasers (amphetamines, which promote the exchange mode), and more recently, discovered partial substrates. We hypothesized that partial substrates trapped the transporter in one or several states of the transport cycle. This conformational trapping may also be conducive to folding. We selected naphthylpropane-2-amines of the phenethylamine library (PAL) including the partial substrate PAL1045 and its congeners PAL287 and PAL1046. We analyzed their impact on the transport cycle of SERT by biochemical approaches and by electrophysiological recordings; substrate-induced peak currents and steady-state currents monitored the translocation of substrate and co-substrate Na+ across the lipid bilayer and the transport cycle, respectively. These experiments showed that PAL1045 and its congeners bound with different affinities (ranging from nm to µm) to various conformational intermediates of SERT during the transport cycle. Consistent with the working hypothesis, PAL1045 was the most efficacious compound in restoring surface expression and transport activity to the folding-deficient mutant SERT-601PG602-AA. These experiments provide a proof-of-principle for a rational search for pharmacochaperones, which may be useful to restore function to clinically relevant folding-deficient transporter mutants.


Asunto(s)
Chaperonas Moleculares/química , Naftoles/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Sustitución de Aminoácidos , Células HEK293 , Humanos , Transporte Iónico , Membrana Dobles de Lípidos/química , Chaperonas Moleculares/farmacología , Mutación Missense , Naftoles/farmacología , Conformación Proteica , Pliegue de Proteína , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sodio/química , Sodio/metabolismo
6.
Handb Exp Pharmacol ; 245: 249-270, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086036

RESUMEN

The human genome encodes 19 genes of the solute carrier 6 (SLC6) family; non-synonymous changes in the coding sequence give rise to mutated transporters, which are misfolded and thus cause diseases in the affected individuals. Prominent examples include mutations in the transporters for dopamine (DAT, SLC6A3), for creatine (CT1, SLC6A8), and for glycine (GlyT2, SLC6A5), which result in infantile dystonia, mental retardation, and hyperekplexia, respectively. Thus, there is an obvious unmet medical need to identify compounds, which can remedy the folding deficit. The pharmacological correction of folding defects was originally explored in mutants of the serotonin transporter (SERT, SLC6A4), which were created to study the COPII-dependent export from the endoplasmic reticulum. This led to the serendipitous discovery of the pharmacochaperoning action of ibogaine. Ibogaine and its metabolite noribogaine also rescue several disease-relevant mutants of DAT. Because the pharmacology of DAT and SERT is exceptionally rich, it is not surprising that additional compounds have been identified, which rescue folding-deficient mutants. These compounds are not only of interest for restoring DAT function in the affected children. They are also likely to serve as useful tools to interrogate the folding trajectory of the transporter. This is likely to initiate a virtuous cycle: if the principles underlying folding of SLC6 transporters are understood, the design of pharmacochaperones ought to be facilitated.


Asunto(s)
Chaperonas Moleculares/uso terapéutico , Deficiencias en la Proteostasis/tratamiento farmacológico , Proteínas Transportadoras de Solutos/fisiología , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/fisiología , Descubrimiento de Drogas , Humanos , Chaperonas Moleculares/farmacología , Mutación , Pliegue de Proteína , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología , Proteínas Transportadoras de Solutos/química , Proteínas Transportadoras de Solutos/genética
7.
Int J Mol Sci ; 19(6)2018 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914172

RESUMEN

The brain of Drosophila melanogaster is comprised of some 100,000 neurons, 127 and 80 of which are dopaminergic and serotonergic, respectively. Their activity regulates behavioral functions equivalent to those in mammals, e.g., motor activity, reward and aversion, memory formation, feeding, sexual appetite, etc. Mammalian dopaminergic and serotonergic neurons are known to be heterogeneous. They differ in their projections and in their gene expression profile. A sophisticated genetic tool box is available, which allows for targeting virtually any gene with amazing precision in Drosophila melanogaster. Similarly, Drosophila genes can be replaced by their human orthologs including disease-associated alleles. Finally, genetic manipulation can be restricted to single fly neurons. This has allowed for addressing the role of individual neurons in circuits, which determine attraction and aversion, sleep and arousal, odor preference, etc. Flies harboring mutated human orthologs provide models which can be interrogated to understand the effect of the mutant protein on cell fate and neuronal connectivity. These models are also useful for proof-of-concept studies to examine the corrective action of therapeutic strategies. Finally, experiments in Drosophila can be readily scaled up to an extent, which allows for drug screening with reasonably high throughput.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Drosophila melanogaster/fisiología , Neuronas Serotoninérgicas/fisiología , Transmisión Sináptica , Animales , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas Serotoninérgicas/metabolismo
8.
J Biol Chem ; 291(40): 20876-20890, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27481941

RESUMEN

Folding-defective mutants of the human dopamine transporter (DAT) cause a syndrome of infantile dystonia/parkinsonism. Here, we provide a proof-of-principle that the folding deficit is amenable to correction in vivo by two means, the cognate DAT ligand noribogaine and the HSP70 inhibitor, pifithrin-µ. We examined the Drosophila melanogaster (d) mutant dDAT-G108Q, which leads to a sleepless phenotype in flies harboring this mutation. Molecular dynamics simulations suggested an unstable structure of dDAT-G108Q consistent with a folding defect. This conjecture was verified; heterologously expressed dDAT-G108Q and the human (h) equivalent hDAT-G140Q were retained in the endoplasmic reticulum in a complex with endogenous folding sensors (calnexin and HSP70-1A). Incubation of the cells with noribogaine (a DAT ligand selective for the inward-facing state) and/or pifithrin-µ (an HSP70 inhibitor) restored folding of, and hence dopamine transport by, dDAT-G108Q and hDAT-G140Q. The mutated versions of DAT were confined to the cell bodies of the dopaminergic neurons in the fly brain and failed to reach the axonal compartments. Axonal delivery was restored, and sleep time was increased to normal length (from 300 to 1000 min/day) if the dDAT-G108Q-expressing flies were treated with noribogaine and/or pifithrin-µ. Rescuing misfolded versions of DAT by pharmacochaperoning is of therapeutic interest; it may provide opportunities to remedy disorders arising from folding-defective mutants of human DAT and of other related SLC6 transporters.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Ibogaína/análogos & derivados , Pliegue de Proteína/efectos de los fármacos , Sueño/genética , Sulfonamidas/farmacología , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Humanos , Ibogaína/administración & dosificación , Ibogaína/farmacología , Simulación de Dinámica Molecular , Mutación , Fenotipo , Sulfonamidas/administración & dosificación
9.
Int J Mol Sci ; 18(11)2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29135937

RESUMEN

Many diseases arise from mutations, which impair protein folding. The study of folding-deficient variants of G protein-coupled receptors and solute carrier 6 (SLC6) transporters has shed light on the folding trajectory, how it is monitored and how misfolding can be remedied. Reducing the temperature lowers the energy barrier between folding intermediates and thereby eliminates stalling along the folding trajectory. For obvious reasons, cooling down is not a therapeutic option. One approach to rescue misfolded variants is to use membrane-permeable orthosteric ligands. Antagonists of GPCRs are-in many instances-effective pharmacochaperones: they restore cell surface expression provided that they enter cells and bind to folding intermediates. Pharmacochaperoning of SLC6 transporters is less readily achieved because the ionic conditions in the endoplasmic reticulum (ER) are not conducive to binding of typical inhibitors. The second approach is to target the heat-shock protein (HSP) relay, which monitors the folding trajectory on the cytosolic side. Importantly, orthosteric ligands and HSP-inhibitors are not mutually exclusive. In fact, pharmacochaperones and HSP-inhibitors can act in an additive or synergistic manner. This was exemplified by rescuing disease-causing, folding-deficient variants of the human dopamine transporters with the HSP70 inhibitor pifithrin-µ and the pharmacochaperone noribogaine in Drosophila melanogaster.


Asunto(s)
Proteínas Mutantes/metabolismo , Pliegue de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Humanos , Modelos Biológicos
10.
J Biol Chem ; 290(21): 13263-78, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25869136

RESUMEN

The folding trajectory of solute carrier 6 (SLC6) family members is of interest because point mutations result in misfolding and thus cause clinically relevant phenotypes in people. Here we examined the contribution of the C terminus in supporting folding of the serotonin transporter (SERT; SLC6A4). Our working hypothesis posited that the amphipathic nature of the C-terminal α-helix (Thr(603)-Thr(613)) was important for folding of SERT. Accordingly, we disrupted the hydrophobic moment of the α-helix by replacing Phe(604), Ile(608), or Ile(612) by Gln. The bulk of the resulting mutants SERT-F604Q, SERT-I608Q, and SERT-I612Q were retained in the endoplasmic reticulum, but their residual delivery to the cell surface still depended on SEC24C. This indicates that the amphipathic nature of the C-terminal α-helix was dispensable to endoplasmic reticulum export. The folding trajectory of SERT is thought to proceed through the inward facing conformation. Consistent with this conjecture, cell surface expression of the misfolded mutants was restored by (i) introducing second site suppressor mutations, which trap SERT in the inward facing state, or (ii) by the pharmacochaperone noribogaine, which binds to the inward facing conformation. Finally, mutation of Glu(615) at the end of the C-terminal α-helix to Lys reduced surface expression of SERT-E615K. A charge reversal mutation in intracellular loop 1 restored surface expression of SERT-R152E/E615K to wild type levels. These observations support a mechanistic model where the C-terminal amphipathic helix is stabilized by an intramolecular salt bridge between residues Glu(615) and Arg(152). This interaction acts as a pivot in the conformational search associated with folding of SERT.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Pliegue de Proteína , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Western Blotting , Células HEK293 , Humanos , Microscopía Confocal , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
11.
J Pharmacol Exp Ther ; 359(1): 73-81, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27451411

RESUMEN

Blockage of ß1-adrenergic receptors is one of the most effective treatments in cardiovascular medicine. Esmolol was introduced some three decades ago as a short-acting ß1-selective antagonist. Landiolol is a more recent addition. Here we compared the two compounds for their selectivity for ß1-adrenergic receptors over ß2-adrenergic receptors, partial agonistic activity, signaling bias, and pharmacochaperoning action by using human embryonic kidney (HEK)293 cell lines, which heterologously express each human receptor subtype. The affinity of landiolol for ß1-adrenergic receptors and ß2-adrenergic receptors was higher and lower than that of esmolol, respectively, resulting in an improved selectivity (216-fold versus 30-fold). The principal metabolite of landiolol (M1) was also ß1-selective, but its affinity was very low. Both landiolol and esmolol caused a very modest rise in cAMP levels but a robust increase in the phosphorylation of extracellular signal regulated kinases 1 and 2, indicating that the two drugs exerted partial agonist activity with a signaling bias. If cells were incubated for ≥24 hours in the presence of ≥1 µM esmolol, the levels of ß1-adrenergic-but not of ß2-adrenergic-receptors increased. This effect was contingent on export of the ß1-receptor from endoplasmic reticulum and was not seen in the presence of landiolol. On the basis of these observations, we conclude that landiolol offers the advantage of: 1) improved selectivity and 2) the absence of pharmacochaperoning activity, which sensitizes cells to rebound effects upon drug discontinuation.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Agonismo Parcial de Drogas , Morfolinas/farmacología , Propanolaminas/farmacología , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Urea/análogos & derivados , Presión Sanguínea/efectos de los fármacos , AMP Cíclico/metabolismo , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Propranolol/farmacología , Urea/farmacología
12.
Angew Chem Int Ed Engl ; 55(5): 1719-22, 2016 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-26695726

RESUMEN

Controversy regarding the number and function of ligand binding sites in neurotransmitter/sodium symporters arose from conflicting data in crystal structures and molecular pharmacology. Here, we have designed novel tools for atomic force microscopy that directly measure the interaction forces between the serotonin transporter (SERT) and the S- and R-enantiomers of citalopram on the single molecule level. This approach is based on force spectroscopy, which allows for the extraction of dynamic information under physiological conditions thus inaccessible via X-ray crystallography. Two distinct populations of characteristic binding strengths of citalopram to SERT were revealed in Na(+)-containing buffer. In contrast, in Li(+) -containing buffer, SERT showed only low force interactions. Conversely, the vestibular mutant SERT-G402H merely displayed the high force population. These observations provide physical evidence for the existence of two binding sites in SERT when accessed in a physiological context. Competition experiments revealed that these two sites are allosterically coupled and exert reciprocal modulation.


Asunto(s)
Nanotecnología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Regulación Alostérica , Sitios de Unión , Cristalografía por Rayos X
13.
J Neurosci ; 34(18): 6344-6351, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24790205

RESUMEN

Export of the serotonin transporter (SERT) from the endoplasmic reticulum (ER) is mediated by the SEC24C isoform of the coatomer protein-II complex. SERT must enter the axonal compartment and reach the presynaptic specialization to perform its function, i.e., the inward transport of serotonin. Refilling of vesicles is contingent on the operation of an efficient relay between SERT and the vesicular monoamine transporter-2 (VMAT2). Here, we visualized the distribution of both endogenously expressed SERT and heterologously expressed variants of human SERT in dissociated rat dorsal raphe neurons to examine the role of SEC24C-dependent ER export in axonal targeting of SERT. We conclude that axonal delivery of SERT is contingent on recruitment of SEC24C in the ER. This conclusion is based on the following observations. (1) Both endogenous and heterologously expressed SERT were delivered to the extensive axonal arborizations and accumulated in bouton-like structures. (2) In contrast, SERT-(607)RI(608)-AA, in which the binding site of SEC24C is disrupted, remained confined to the microtubule-associated protein 2-positive somatodendritic compartment. (3) The overexpression of dominant-negative SEC24C-D(796)V/D(797)N (but not of the corresponding SEC24D mutant) redirected both endogenous SERT and heterologously expressed yellow fluorescent protein-SERT from axons to the somatodendritic region. (4) SERT-K(610)Y, which harbors a mutation converting it into an SEC24D client, was rerouted from the axonal to the somatodendritic compartment by dominant-negative SEC24D. In contrast, axonal targeting of the VMAT2 was disrupted by neither dominant-negative SEC24C nor dominant-negative SEC24D. This suggests that SERT and VMAT2 reach the presynaptic specialization by independent routes.


Asunto(s)
Axones/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas/ultraestructura , Núcleos del Rafe/citología , Proteínas de Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Neuronas/metabolismo , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-ets/genética , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Sinaptosomas/metabolismo , Triptófano Hidroxilasa/metabolismo , Proteínas de Transporte Vesicular/genética
14.
Mol Pharmacol ; 88(1): 12-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25873594

RESUMEN

The membrane transporters for the monoamines serotonin (SERT) and dopamine (DAT) are prominent targets of various psychoactive substances, including competitive inhibitors, such as tricyclic antidepressants, methylphenidate, and cocaine. Upon rapid application of a substrate, SERT and DAT display an inwardly directed current comprised of a peak and a steady-state component. Binding of a competitive inhibitor to the transporter leads to reduction of the peak current amplitude because occupancy of the transporter by an inhibitor prevents the induction of the peak current by the substrate. We show that the inhibitory effect on the peak current can be used to study the association rate constant (k(on)), dissociation rate constant (k(off)), and equilibrium dissociation constant (K(D)) of chemically distinct SERT and DAT inhibitors, with high temporal precision and without the need of high-affinity radioligands as surrogates. We exemplify our approach by measuring the kinetics of cocaine, methylphenidate, and desipramine binding to SERT and DAT. Our analysis revealed that the selectivity of methylphenidate and desipramine for DAT and SERT, respectively, can be accounted for by their rate of association and not by the residence time in their respective binding sites.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de la Captación de Neurotransmisores/farmacocinética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sitios de Unión , Cocaína/farmacocinética , Desipramina/farmacocinética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Células HEK293 , Humanos , Metilfenidato/farmacocinética , Técnicas de Placa-Clamp/métodos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química
15.
J Biol Chem ; 289(42): 28987-9000, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25202009

RESUMEN

Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90ß. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90ß by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90ß. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay.


Asunto(s)
Citosol/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Glutatión Transferasa/metabolismo , Células HEK293 , Humanos , Ibogaína/análogos & derivados , Ibogaína/química , Mutación , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo
16.
J Biol Chem ; 288(8): 5330-41, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23288844

RESUMEN

The serotonin transporter (SERT) maintains serotonergic neurotransmission via rapid reuptake of serotonin from the synaptic cleft. SERT relies exclusively on the coat protein complex II component SEC24C for endoplasmic reticulum (ER) export. The closely related transporters for noradrenaline and dopamine depend on SEC24D. Here, we show that discrimination between SEC24C and SEC24D is specified by the residue at position +2 downstream from the ER export motif ((607)RI(608) in SERT). Substituting Lys(610) with tyrosine, the corresponding residue found in the noradrenaline and dopamine transporters, switched the SEC24 isoform preference: SERT-K610Y relied solely on SEC24D to reach the cell surface. This analysis was extended to other SLC6 (solute carrier 6) transporter family members: siRNA-dependent depletion of SEC24C, but not of SEC24D, reduced surface levels of the glycine transporter-1a, the betaine/GABA transporter and the GABA transporter-4. Experiments with dominant negative versions of SEC24C and SEC24D recapitulated these findings. We also verified that the presence of two ER export motifs (in concatemers of SERT and GABA transporter-1) supported recruitment of both SEC24C and SEC24D. To the best of our knowledge, this is the first report to document a change in SEC24 specificity by mutation of a single residue in the client protein. Our observations allowed for deducing a rule for SLC6 family members: a hydrophobic residue (Tyr or Val) in the +2 position specifies interaction with SEC24D, and a hydrophilic residue (Lys, Asn, or Gln) recruits SEC24C. Variations in SEC24C are linked to neuropsychiatric disorders. The present findings provide a mechanistic explanation. Variations in SEC24C may translate into distinct surface levels of neurotransmitter transporters.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Lisina/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiología , Secuencias de Aminoácidos , Transporte Biológico , Biotinilación , Variación Genética , Células HEK293 , Células HeLa , Humanos , Mutagénesis , Mutación , Neurotransmisores/metabolismo , Estructura Terciaria de Proteína , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transfección , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
17.
Protein Sci ; 33(1): e4842, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032325

RESUMEN

In chordates, energy buffering is achieved in part through phosphocreatine, which requires cellular uptake of creatine by the membrane-embedded creatine transporter (CRT1/SLC6A8). Mutations in human slc6a8 lead to creatine transporter deficiency syndrome, for which there is only limited treatment. Here, we used a combined homology modeling, molecular dynamics, and experimental approach to generate a structural model of CRT1. Our observations support the following conclusions: contrary to previous proposals, C144, a key residue in the substrate binding site, is not present in a charged state. Similarly, the side chain D458 must be present in a protonated form to maintain the structural integrity of CRT1. Finally, we identified that the interaction chain Y148-creatine-Na+ is essential to the process of occlusion, which occurs via a "hold-and-pull" mechanism. The model should be useful to study the impact of disease-associated point mutations on the folding of CRT1 and identify approaches which correct folding-deficient mutants.


Asunto(s)
Creatina , Proteínas de Transporte de Membrana , Humanos , Creatina/genética , Creatina/metabolismo , Mutagénesis , Mutación
18.
Front Mol Neurosci ; 17: 1466694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268250

RESUMEN

As the first member of the solute carrier 6 (SLC6) protein family, the γ-aminobutyric acid (GABA) transporter 1 (GAT1, SLC6A1), plays a pivotal role in the uptake of GABA from the synaptic cleft into neurons and astrocytes. This process facilitates the subsequent storage of GABA in presynaptic vesicles. The human SLC6A1 gene is highly susceptible to missense mutations, leading to severe clinical outcomes, such as epilepsy, in the afflicted patients. The molecular mechanisms of SLC6A1-associated disorders are discerned to some degree; many SLC6A1 mutations are now known to impair protein folding, and consequently fail to reach the plasma membrane. Inherently, once inside the endoplasmic reticulum (ER), GAT1 abides by a complex cascade of events that enable efficient intracellular trafficking. This involves association with specialized molecular chaperones responsible for steering the protein folding process, oligomerization, sorting through the Golgi apparatus, and ultimately delivery to the cell surface. The entire process is subject to stringent quality control mechanisms at multiple checkpoints. While the majority of the existing loss-of-function SLC6A1 variants interfere with folding and membrane targeting, certain mutants retain abundant surface expression. In either scenario, suppressed GAT1 activity disrupts GABAergic neurotransmission, preceding the disease manifestation in individuals harboring these mutations. The nervous system is enthralling and calls for systematic, groundbreaking research efforts to dissect the precise molecular factors associated with the onset of complex neurological disorders, and uncover additional non-canonical therapeutic targets. Recent research has given hope for some of the misfolded SLC6A1 variants, which can be salvaged by small molecules, i.e., chemical and pharmacological chaperones, acting on multiple upstream targets in the secretory pathway. We here highlight the significance of pharmacochaperoning as a therapeutic strategy for the treatment of SLC6A1-related disorders.

19.
J Biol Chem ; 287(35): 29627-35, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778257

RESUMEN

The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP(+)) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKII(T305D)), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP(+) efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome.


Asunto(s)
Síndrome de Angelman/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Sustitución de Aminoácidos , Anfetamina/farmacología , Síndrome de Angelman/genética , Síndrome de Angelman/patología , Animales , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Modelos Animales de Enfermedad , Dopaminérgicos/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Neuronas Dopaminérgicas/patología , Humanos , Ratones , Ratones Noqueados , Mutación Missense , Proteínas del Tejido Nervioso/genética
20.
FASEB J ; 26(3): 976-86, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22085643

RESUMEN

Human organic cation transporter 2 (hOCT2) is involved in transport of many endogenous and exogenous organic cations, mainly in kidney and brain cells. Because the quaternary structure of transmembrane proteins plays an essential role for their cellular trafficking and function, we investigated whether hOCT2 forms oligomeric complexes, and if so, which part of the transporter is involved in the oligomerization. A yeast 2-hybrid mating-based split-ubiquitin system (mbSUS), fluorescence resonance energy transfer, Western blot analysis, cross-linking experiments, immunofluorescence, and uptake measurements of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium were applied to human embryonic kidney 293 (HEK293) cells transfected with hOCT2 and partly also to freshly isolated human proximal tubules. The role of cysteines for oligomerization and trafficking of the transporter to the plasma membranes was investigated in cysteine mutants of hOCT2. hOCT2 formed oligomers both in the HEK293 expression system and in native human kidneys. The cysteines of the large extracellular loop are important to enable correct folding, oligomeric assembly, and plasma membrane insertion of hOCT2. Mutation of the first and the last cysteines of the loop at positions 51 and 143 abolished oligomer formation. Thus, the cysteines of the extracellular loop are important for correct trafficking of the transporter to the plasma membrane and for its oligomerization.


Asunto(s)
Membrana Celular/metabolismo , Cisteína/metabolismo , Túbulos Renales Proximales/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Transporte Biológico , Western Blotting , Cisteína/química , Cisteína/genética , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mutación , Proteínas de Transporte de Catión Orgánico/química , Proteínas de Transporte de Catión Orgánico/genética , Transportador 2 de Cátion Orgánico , Unión Proteica , Multimerización de Proteína , Compuestos de Piridinio/farmacocinética , Técnicas de Cultivo de Tejidos , Transfección , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA