Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biol Pharm Bull ; 47(1): 60-71, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926527

RESUMEN

Residual cancer cells after radiation therapy may acquire malignant phenotypes such as enhanced motility and migration ability, and therefore it is important to identify targets for preventing radiation-induced malignancy in order to increase the effectiveness of radiotherapy. G-Protein-coupled receptors (GPCRs) such as adenosine A2B receptor and cannabinoid receptors (CB1, CB2, and GPR55) may be involved, as they are known to have roles in proliferation, invasion, migration and tumor growth. In this study, we investigated the involvement of A2B and cannabinoid receptors in γ-radiation-induced enhancement of cell migration and actin remodeling, as well as the involvement of cannabinoid receptors in cell migration enhancement via activation of A2B receptor in human lung cancer A549 cells. Antagonists or knockdown of A2B, CB1, CB2, or GPR55 receptor suppressed γ-radiation-induced cell migration and actin remodeling. Furthermore, BAY60-6583 (an A2B receptor-specific agonist) enhanced cell migration and actin remodeling in A549 cells, and this enhancement was suppressed by antagonists or knockdown of CB2 or GPR55, though not CB1 receptor. Our results indicate that A2B receptors and cannabinoid CB1, CB2, and GPR55 receptors all contribute to γ-radiation-induced acquisition of malignant phenotypes, and in particular that interactions of A2B receptor and cannabinoid CB2 and GPR55 receptors play a role in promoting cell migration and actin remodeling. A2B receptor-cannabinoid receptor pathways may be promising targets for blocking the appearance of malignant phenotypes during radiotherapy of lung cancer.


Asunto(s)
Cannabinoides , Neoplasias Pulmonares , Humanos , Células A549 , Actinas , Cannabinoides/farmacología , Cannabinoides/metabolismo , Neoplasias Pulmonares/radioterapia , Receptor de Adenosina A2B , Receptores de Cannabinoides
2.
J Pharmacol Sci ; 149(3): 85-92, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35641032

RESUMEN

Neuropathic pain is refractory to opioid analgesics. Since there are functional linkages between µ-opioid receptors (MOR) and cannabinoid receptors (CBR), the present study was designed to investigate the interactions between MOR and CB1R based on antinociceptive effects for neuropathic pain mediated through G protein-coupled inwardly-rectifying potassium channels (GIRKs). The antinociceptive effects against pseudonociceptive response or neuropathic pain of MOR and CBR agonists were assessed in mice with or without partial sciatic nerve ligation. To investigate the functional interaction between MOR and CB1R, electrophysiological recording through GIRK was performed using the two-electrode voltage-clamp method in oocytes along with Western blotting in the spinal cord of mice. Co-administration of the MOR agonist DAMGO and the CB1R agonist CP55,940 augmented inwardly rectifying K+ currents in Xenopus oocytes co-expressing MOR, CB1R and GIRK1/2. Further, combination of morphine and the CBR agonist WIN-55,212-2 produced prominent antinociceptive effects in an i.t. GIRK1 inhibitor-reversible manner. Furthermore, CB1R was upregulated under neuropathic pain in the spinal cord, and such upregulation and antinociceptive effects were not altered by repeated treatment with morphine plus WIN-55,212-2. Our findings suggest that co-administration of MOR and CBR agonists could enhance their antinociceptive effects through GIRK1 in the spinal cord of mice.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Neuralgia , Receptores de Cannabinoides , Receptores Opioides mu , Animales , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Ratones , Morfina/farmacología , Neuralgia/tratamiento farmacológico , Receptores de Cannabinoides/metabolismo , Receptores Opioides mu/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163722

RESUMEN

Cholesterol is an essential lipid in vertebrates, but excess blood cholesterol promotes atherosclerosis. In the liver, cholesterol is metabolized to bile acids by cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7A1), the transcription of which is negatively regulated by the ERK pathway. Fibroblast growth factor 21 (FGF21), a hepatokine, induces ERK phosphorylation and suppresses Cyp7a1 transcription. Taurine, a sulfur-containing amino acid, reportedly promotes cholesterol metabolism and lowers blood and hepatic cholesterol levels. However, the influence of long-term feeding of taurine on cholesterol levels and metabolism remains unclear. Here, to evaluate the more chronic effects of taurine on cholesterol levels, we analyzed mice fed a taurine-rich diet for 14-16 weeks. Long-term feeding of taurine lowered plasma cholesterol and bile acids without significantly changing other metabolic parameters, but hardly affected these levels in the liver. Moreover, taurine upregulated Cyp7a1 levels, while downregulated phosphorylated ERK and Fgf21 levels in the liver. Likewise, taurine-treated Hepa1-6 cells, a mouse hepatocyte line, exhibited downregulated Fgf21 levels and upregulated promoter activity of Cyp7a1. These results indicate that taurine promotes cholesterol metabolism by suppressing the FGF21/ERK pathway followed by upregulating Cyp7a1 expression. Collectively, this study shows that long-term feeding of taurine lowers both plasma cholesterol and bile acids, reinforcing that taurine effectively prevents hypercholesterolemia.


Asunto(s)
Ácidos y Sales Biliares , Taurina , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Colesterol en la Dieta/metabolismo , Dieta , Hígado/metabolismo , Ratones , Taurina/metabolismo , Taurina/farmacología
4.
Biochem Biophys Res Commun ; 525(2): 447-454, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32107004

RESUMEN

Cellular prion protein (PrP) is a membrane protein that is highly conserved among mammals and mainly expressed on the cell surface of neurons. Despite its reported interactions with various membrane proteins, no functional studies have so far been carried out on it, and its physiological functions remain unclear. Neuronal cell death has been observed in a PrP-knockout mouse model expressing Doppel protein, suggesting that PrP might be involved in Ca2+ signaling. In this study, we evaluated the binding of PrP to metabotropic glutamate receptor 1 (mGluR1) and found that wild-type PrP (PrP-wt) and mGluR1 co-immunoprecipitated in dual-transfected Neuro-2a (N2a) cells. Fluorescence resonance energy transfer analysis revealed an energy transfer between mGluR1-Cerulean and PrP-Venus. In order to determine whether PrP can modulate mGluR1 signaling, we performed Ca2+ imaging analyses following repetitive exposure to an mGluR1 agonist. Agonist stimulation induced synchronized Ca2+ oscillations in cells coexpressing PrP-wt and mGluR1. In contrast, N2a cells expressing PrP-ΔN failed to show ligand-dependent regulation of mGluR1-Ca2+ signaling, indicating that PrP can bind to mGluR1 and modulate its function to prevent irregular Ca2+ signaling and that its N-terminal region functions as a molecular switch during Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Proteínas Priónicas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Ratones , Neuronas/metabolismo , Mapas de Interacción de Proteínas
5.
J Pharmacol Sci ; 142(4): 140-147, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31982332

RESUMEN

Carvacrol is the predominant monoterpene in essential oils from many aromatic plants. Several animal studies showing analgesic effects of carvacrol indicate potential of carvacrol as a new medication for patients with refractory pain. Voltage-gated sodium channels (Nav) are thought to have crucial roles in the development of inflammatory and neuropathic pain, but there is limited information about whether the analgesic mechanism of carvacrol involves Nav. We used whole-cell, two-electrode, voltage-clamp techniques to examine the effects of carvacrol on sodium currents in Xenopus oocytes expressing α subunits of Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8. Carvacrol dose-dependently suppressed sodium currents at a holding potential that induced half-maximal current. The half-maximal inhibitory concentration values for Nav1.2, Nav1.3, Nav1.6, Nav1.7, and Nav1.8 were 233, 526, 215, 367, and 824 µmol/L, respectively, indicating that carvacrol had more potent inhibitory effects towards Nav1.2 and Nav1.6 than Nav1.3, Nav1.7, and Nav1.8. Gating analysis showed a depolarizing shift of the activation curve and a hyperpolarizing shift of the inactivation curve in all five α subunits following carvacrol treatment. Furthermore, carvacrol exhibits a use-dependent block for all five α Nav subunits. These findings provide a better understanding of the mechanisms associated with the analgesic effect of carvacrol.


Asunto(s)
Cimenos/farmacología , Oocitos/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje , Analgésicos , Animales , Xenopus
6.
J Pharmacol Sci ; 143(4): 320-324, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32505645

RESUMEN

Cellular dielectric spectroscopy (CDS) is a novel technology enabling pharmacological evaluation of multiple receptor types with a label-free cell-based assay. We evaluated activities of a family of ligand-gated channels, transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) channels by an electrical impedance-based biosensor (CellKey™ system) using CDS. Measures of both potency (EC50) and efficacy (Emax) of these agonists with CellKey™ were almost identical to those made using the traditional Ca2+ influx assay in TRPV1- or TRPA1-expressing cells, suggesting that CellKey™ is a simpler and easier means of evaluating TRP activities.


Asunto(s)
Espectroscopía Dieléctrica/métodos , Canales de Potencial de Receptor Transitorio/metabolismo , Células HEK293 , Humanos , Canal Catiónico TRPA1 , Canales Catiónicos TRPV
7.
Biochem Biophys Res Commun ; 508(1): 117-122, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30471861

RESUMEN

White adipose tissue (WAT) is not only the main tissue for energy storage but also an endocrine organ that secretes adipokines. Obesity is the most common metabolic disorder and is related to alterations in WAT characteristics, such as chronic inflammation and increasing oxidative stress. WW domain containing E3 ubiquitin protein ligase 1 (WWP1) is a HECT-type ubiquitin E3 ligase that has been implicated in various pathologies. In the present study, we found that WWP1 was upregulated in obese WAT in a p53-dependent manner. To investigate the functions of WWP1 in adipocytes, a proteome analysis of WWP1 overexpression (OE) and knockdown (KD) 3T3-L1 cells was performed. This analysis showed a positive correlation between WWP1 expression and the abundance of several antioxidative proteins. Thus, we measured reactive oxygen species (ROS) in WWP1 OE and KD cells. Consistent with the proteome results, WWP1 OE reduced ROS levels, whereas KD increased them. These findings indicate that WWP1 is an obesity-inducible E3 ubiquitin ligase that can protect against obesity-associated oxidative stress in WAT.


Asunto(s)
Adipocitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Genes p53 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Estrés Oxidativo , Proteoma/genética , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
8.
Int J Mol Sci ; 20(13)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277262

RESUMEN

Carboplatin, an anticancer drug, often causes chemotherapy-induced peripheral neuropathy (PN). Transient receptor potential ankyrin 1 (TRPA1), a non-selective cation channel, is a polymodal nociceptor expressed in sensory neurons. TRPA1 is not only involved in pain transmission, but also in allodynia or hyperalgesia development. However, the effects of TRPA1 on carboplatin-induced PN is unclear. We revealed that carboplatin induced mechanical allodynia and cold hyperalgesia, and the pains observed in carboplatin-induced PN models were significantly suppressed by the TRPA1 antagonist HC-030031 without a change in the level of TRPA1 protein. In cells expressing human TRPA, carboplatin had no effects on changes in intracellular Ca2+ concentration ([Ca2+]i); however, carboplatin pretreatment enhanced the increase in [Ca2+]i induced by the TRPA1 agonist, allyl isothiocyanate (AITC). These effects were suppressed by an inhibitor of protein kinase A (PKA). The PKA activator forskolin enhanced AITC-induced increase in [Ca2+]i and carboplatin itself increased intracellular cyclic adenosine monophosphate (cAMP) levels. Moreover, inhibition of A-kinase anchoring protein (AKAP) significantly decreased the carboplatin-induced enhancement of [Ca2+]i induced by AITC and improved carboplatin-induced mechanical allodynia and cold hyperalgesia. These results suggested that carboplatin induced mechanical allodynia and cold hyperalgesia by increasing sensitivity to TRPA1 via the cAMP-PKA-AKAP pathway.


Asunto(s)
Carboplatino/farmacología , Hiperalgesia/inducido químicamente , Transducción de Señal , Canal Catiónico TRPA1/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Carboplatino/efectos adversos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Amino Acids ; 50(5): 527-535, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29523960

RESUMEN

Alterations in adipocyte characteristics are highly implicated in the pathology of obesity. In a recent article, we demonstrated that high-fat diet-induced obesity impairs lysosomal function, thereby suppressing autophagy in mice white adipose tissue. Taurine, an amino acid naturally contained in the normal diet and existing ubiquitously in tissues, has been reported to improve insulin resistance and chronic inflammation in animal models, but underlying mechanisms remain unclear. From these findings, we hypothesized that improvement of obese pathology by taurine may be mediated through recovery of autophagy. In matured 3T3-L1 mouse adipocytes, treatment with taurine-promoted autophagy. Moreover, taurine-induced nuclear translocation of transcription factor EB (TFEB), a master regulator of autophagy- and lysosome-related factors. As this translocation is regulated by several kinase pathways, including extracellular signal-related kinase 1 and 2 (ERK1/2) and mechanistic target of rapamycin protein kinase complex 1 (MTORC1), we examined related signaling elements. Consequently, taurine-reduced phosphorylation levels of ERK1/2 but did not alter the phosphorylation of MTORC1 pathway-associated adenosine monophosphate-activated protein kinase or ribosomal protein S6 kinase. Taken together, these results suggest that taurine may enhance TFEB nuclear translocation through ERK1/2 to accelerate autophagy. The effect discovered in this study may represent a novel mechanism for the improvement of obesity-related pathology by taurine.


Asunto(s)
Adipocitos/metabolismo , Autofagia/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Taurina/farmacología , Adipocitos/citología , Animales , Línea Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo
10.
J Pharmacol Sci ; 137(1): 93-97, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29773519

RESUMEN

The neurosteroid allopregnanolone has potent analgesic effects, and its potential use for neuropathic pain is supported by recent reports. However, the analgesic mechanisms are obscure. The voltage-gated sodium channels (Nav) α subunit Nav1.3 is thought to play an essential role in neuropathic pain. Here, we report the effects of allopregnanolone sulfate (APAS) on sodium currents (INa) in Xenopus oocytes expressing Nav1.3 with ß1 or ß3 subunits. APAS suppressed INa of Nav1.3 with ß1 and ß3 in a concentration-dependent manner (IC50 values; 75 and 26 µmol/L). These results suggest the possible importance of Nav1.3 inhibition for the analgesic mechanisms of allopregnanolone.


Asunto(s)
Analgésicos , Canal de Sodio Activado por Voltaje NAV1.3/metabolismo , Neurotransmisores/farmacología , Oocitos/metabolismo , Pregnanolona/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Relación Dosis-Respuesta a Droga , Femenino , Neuralgia/tratamiento farmacológico , Neurotransmisores/uso terapéutico , Pregnanolona/uso terapéutico , Xenopus
11.
Int J Mol Sci ; 19(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513935

RESUMEN

Despite the similar phenotypes, including weight loss, reduction of food intake, and lower adiposity, associated with caloric restriction (CR) and cancer cachexia (CC), CC is a progressive wasting syndrome, while mild CR improves whole body metabolism. In the present study, we compared adipose metabolic changes in a novel rat model of CC, mild CR (70% of the food intake of control rats, which is similar to the food consumption of CC rats), and severe CR (30% of the food intake of controls). We show that CC and severe CR are associated with much smaller adipocytes with significantly lower mitochondrial DNA content; but, that mild CR is not. CC and both mild and severe CR similarly upregulated proteins involved in lipolysis. CC also downregulated proteins involved in fatty acid biosynthesis, but mild CR upregulated these. These findings suggest that CC might impair de novo fatty acid biosynthesis and reduce mitochondrial biogenesis, similar to severe CR. We also found that rikkunshito, a traditional Japanese herbal medicine, does not ameliorate the enhanced lipolysis and mitochondrial impairment, but rather, rescues de novo fatty acid biosynthesis, suggesting that rikkunshito administration might have partially similar effects to mild CR.


Asunto(s)
Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Caquexia/complicaciones , Caquexia/tratamiento farmacológico , Restricción Calórica , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Adipocitos/efectos de los fármacos , Adipocitos/patología , Tejido Adiposo/efectos de los fármacos , Animales , Atrofia , Caquexia/genética , Caquexia/patología , Tamaño de la Célula/efectos de los fármacos , ADN Mitocondrial/genética , Medicamentos Herbarios Chinos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Desnudas , Ratas Wistar
12.
J Pharmacol Sci ; 130(2): 72-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26738986

RESUMEN

Non-selective transient receptor potential vanilloid (TRPV) cation channels are activated by various insults, including exposure to heat, acidity, and the compound capsaicin, resulting in sensations of pain in the skin, visceral organs, and oral cavity. Recently, TRPV1 activation was also demonstrated in response to basic pH elicited by ammonia and intracellular alkalization. Tris-hydroxymethyl aminomethane (THAM) is widely used as an alkalizing agent; however, the effects of THAM on TRPV1 channels have not been defined. In this study, we characterized the effects of THAM-induced TRPV1 channel activation in baby hamster kidney cells expressing human TRPV1 (hTRPV1) and the Ca(2+)-sensitive fluorescent sensor GCaMP2 by real-time confocal microscopy. Notably, both capsaicin (1 µM) and pH 6.5 buffer elicited steep increases in the intracellular Ca(2+) concentration ([Ca(2+)]i), while treatment with THAM (pH 8.5) alone had no effect. However, treatment with THAM (pH 8.5) following capsaicin application elicited a profound, long-lasting increase in [Ca(2+)]i that was completely inhibited by the TRPV1 antagonist capsazepine. Taken together, these results suggest that hTRPV1 pre-activation is required to provoke enhanced, THAM-induced [Ca(2+)]i increases, which could be a mechanism underlying pain induced by basic pH.


Asunto(s)
Acrilamidas/farmacología , Calcio/metabolismo , Capsaicina/farmacología , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/análogos & derivados , Células Cultivadas , Cricetinae , Concentración de Iones de Hidrógeno , Dolor/genética , Canales Catiónicos TRPV/antagonistas & inhibidores
13.
Am J Physiol Gastrointest Liver Physiol ; 308(7): G579-90, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25634809

RESUMEN

Various colonic motor activities are thought to mediate propulsion and mixing/absorption of colonic content. The Japanese traditional medicine daikenchuto (TU-100), which is widely used for postoperative ileus in Japan, accelerates colonic emptying in healthy humans. Hydroxy-α sanshool (HAS), a readily absorbable active ingredient of TU-100 and a KCNK3/KCNK9/KCNK18 blocker as well as TRPV1/TRPA1 agonist, has been investigated for its effects on colonic motility. Motility was evaluated by intraluminal pressure and video imaging of rat proximal colons in an organ bath. Distribution of KCNKs was investigated by RT-PCR, in situ hybridization, and immunohistochemistry. Current and membrane potential were evaluated with use of recombinant KCNK3- or KCNK9-expressing Xenopus oocytes and Chinese hamster ovary cells. Defecation frequency in rats was measured. HAS dose dependently induced strong propulsive "squeezing" motility, presumably as long-distance contraction (LDC). TRPV1/TRPA1 agonists induced different motility patterns. The effect of HAS was unaltered by TRPV1/TRPA1 antagonists and desensitization. Lidocaine (a nonselective KCNK blocker) and hydroxy-ß sanshool (a geometrical isomer of HAS and KCNK3 blocker) also induced colonic motility as a rhythmic propagating ripple (RPR) and a LDC-like motion, respectively. HAS-induced "LDC," but not lidocaine-induced "RPR," was abrogated by a neuroleptic agent tetrodotoxin. KCNK3 and KCNK9 were located mainly in longitudinal smooth muscle cells and in neural cells in the myenteric plexus, respectively. Administration of HAS or TU-100 increased defecation frequency in normal and laparotomy rats. HAS may evoke strong LDC possibly via blockage of the neural KCNK9 channel in the colonic myenteric plexus.


Asunto(s)
Colon/inervación , Ácidos Grasos Insaturados/farmacología , Fármacos Gastrointestinales/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Músculo Liso/inervación , Plexo Mientérico/efectos de los fármacos , Alcamidas Poliinsaturadas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Animales , Células CHO , Cricetulus , Defecación/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Masculino , Potenciales de la Membrana , Plexo Mientérico/metabolismo , Oocitos , Panax , Extractos Vegetales/farmacología , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Presión , Ratas Sprague-Dawley , Factores de Tiempo , Transfección , Grabación en Video , Xenopus , Zanthoxylum , Zingiberaceae
14.
Anesth Analg ; 120(3): 597-605, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25695577

RESUMEN

BACKGROUND: Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. METHODS: We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. RESULTS: Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 µmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. CONCLUSIONS: Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion channel pore both extracellularly and intracellularly. These results help to understand the mechanisms underlying the analgesic effects of lidocaine when it is administered locally at least.


Asunto(s)
Anestésicos Locales/farmacología , Lidocaína/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Anestésicos Locales/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Lidocaína/metabolismo , Potenciales de la Membrana , Antagonistas del Receptor Purinérgico P2X/metabolismo , Receptores Purinérgicos P2X3/efectos de los fármacos , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X4/efectos de los fármacos , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Factores de Tiempo , Xenopus laevis
15.
J Anesth ; 29(3): 475-479, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25394761

RESUMEN

Tramadol has been used as an analgesic for several decades. µ-Opioid receptors (µORs) are the major receptors that mediate the analgesic effects of opioids. Although µORs have been thought to be one of the sites of action of tramadol, there has been no report that directly proves whether tramadol is an agonist of µOR or not. In this study, we examined the effects of tramadol and its main active metabolite O-desmethyltramadol (M1), on the function of µORs using Xenopus oocytes expressing cloned human µORs. The effects of tramadol and M1 were evaluated using the Ca(2+)-activated Cl(-) current assay method for G(i/o)-protein-coupled receptors by using a µOR fused to G(qi5) (µOR-G(qi5)) in Xenopus oocytes. DAMGO [(D-Ala(2), N-MePhe(4), Gly(5)-ol)-enkephalin] evoked Cl(-) currents in oocytes expressing µOR-G(qi5) in a concentration-dependent manner. Tramadol and M1 also evoked Cl(-) currents in the oocytes expressing µOR-G(qi5); however, relatively higher concentrations (compared to DMAGO) were necessary to induce such currents. Tramadol and M1 had a direct effect on µORs expressed in Xenopus oocytes. Although the monoamine uptake system and several types of ligand-gated ion channels are thought to be one of the targets for tramadol, tramadol-induced antinociception may be mediated at least in part, by the direct activation of µORs.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides mu/efectos de los fármacos , Tramadol/análogos & derivados , Animales , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Femenino , Humanos , Oocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Tramadol/farmacología , Xenopus laevis
16.
Am J Physiol Endocrinol Metab ; 306(4): E373-87, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24347053

RESUMEN

Cancer cachexia (CC), a syndrome characterized by anorexia and body weight loss due to low fat-free mass levels, including reduced musculature, markedly worsens patient quality of life. Although stomach cancer patients have the highest incidence of cachexia, few experimental models for the study of stomach CC have been established. Herein, we developed stomach CC animal models using nude rats subcutaneously implanted with two novel cell lines, i.e., MKN45c185, established from the human stomach cancer cell line MKN-45, and 85As2, derived from peritoneal dissemination of orthotopically implanted MKN45c185 cells in mice. Both CC models showed marked weight loss, anorexia, reduced musculature and muscle strength, increased inflammatory markers, and low plasma albumin levels; however, CC developed earlier and was more severe in rats implanted with 85As2 than in those implanted with MKN45cl85. Moreover, human leukemia inhibitory factor (LIF), a known cachectic factor, and hypothalamic orexigenic peptide mRNA levels increased in the models, whereas hypothalamic anorexigenic peptide mRNA levels decreased. Surgical removal of the tumor not only abolished cachexia symptoms but also reduced plasma LIF levels to below detectable limits. Importantly, oral administration of rikkunshito, a traditional Japanese medicine, substantially ameliorated CC-related anorexia and body composition changes. In summary, our novel peritoneal dissemination-derived 85As2 rat model developed severe cachexia, possibly caused by LIF from cancer cells, that was ameliorated by rikkunshito. This model should provide a useful tool for further study into the mechanisms and treatment of stomach CC.


Asunto(s)
Caquexia/etiología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Neoplasias Gástricas/complicaciones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Caquexia/tratamiento farmacológico , Caquexia/metabolismo , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Citocinas/sangre , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Masculino , Melaninas/genética , Melaninas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Consumo de Oxígeno , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Desnudas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo
17.
Anesthesiology ; 121(3): 620-31, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24809977

RESUMEN

BACKGROUND: The neurosteroids allopregnanolone and pregnanolone are potent positive modulators of γ-aminobutyric acid type A receptors. Antinociceptive effects of allopregnanolone have attracted much attention because recent reports have indicated the potential of allopregnanolone as a therapeutic agent for refractory pain. However, the analgesic mechanisms of allopregnanolone are still unclear. Voltage-gated sodium channels (Nav) are thought to play important roles in inflammatory and neuropathic pain, but there have been few investigations on the effects of allopregnanolone on sodium channels. METHODS: Using voltage-clamp techniques, the effects of allopregnanolone sulfate (APAS) and pregnanolone sulfate (PAS) on sodium current were examined in Xenopus oocytes expressing Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits. RESULTS: APAS suppressed sodium currents of Nav1.2, Nav1.6, and Nav1.7 at a holding potential causing half-maximal current in a concentration-dependent manner, whereas it markedly enhanced sodium current of Nav1.8 at a holding potential causing maximal current. Half-maximal inhibitory concentration values for Nav1.2, Nav1.6, and Nav1.7 were 12 ± 4 (n = 6), 41 ± 2 (n = 7), and 131 ± 15 (n = 5) µmol/l (mean ± SEM), respectively. The effects of PAS were lower than those of APAS. From gating analysis, two compounds increased inactivation of all α subunits, while they showed different actions on activation of each α subunit. Moreover, two compounds showed a use-dependent block on Nav1.2, Nav1.6, and Nav1.7. CONCLUSION: APAS and PAS have diverse effects on sodium currents in oocytes expressing four α subunits. APAS inhibited the sodium currents of Nav1.2 most strongly.


Asunto(s)
Pregnanolona/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Animales , Femenino , Canal de Sodio Activado por Voltaje NAV1.2/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.6/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.8/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Canales de Sodio Activados por Voltaje/fisiología , Xenopus laevis
18.
J Pharmacol Sci ; 126(4): 302-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25421710

RESUMEN

The G protein-coupled receptors (GPCRs) form the largest and the most versatile superfamily that share a seven-transmembrane-spanning architecture. GPCR-signaling is involved in vision, taste, olfaction, sympathetic/parasympathetic nervous functions, metabolism, and immune regulation, indicating that GPCRs are extremely important therapeutic targets for various diseases. Cellular dielectric spectroscopy (CDS) is a novel technology that employs a label-free, real-time and cell-based assay approach for the comprehensive pharmacological evaluation of cells that exogenously or endogenously express GPCRs. Among the biosensors that use CDS technology, the CellKey™ system not only detects the activation of GPCRs but also distinguishes between signals through different subtypes of the Gα protein (Gs, Gi/o, and Gq). In this review, we discuss the traditional assays and then introduce the principles by which the CellKey™ system evaluates GPCR activation, followed by a perspective on the advantages and future prospects of this system.


Asunto(s)
Técnicas Biosensibles/métodos , Espectroscopía Dieléctrica , Receptores Acoplados a Proteínas G/análisis , Animales , Técnicas Biosensibles/tendencias , Células Cultivadas , Humanos , Ratas , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Tumorales Cultivadas
19.
Anesth Analg ; 118(3): 554-62, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24557103

RESUMEN

BACKGROUND: Anandamide is an endocannabinoid that regulates multiple physiological functions by pharmacological actions, in a manner similar to marijuana. Recently, much attention has been paid to the analgesic effect of endocannabinoids in terms of identifying new pharmacotherapies for refractory pain management, but the mechanisms of the analgesic effects of anandamide are still obscure. Voltage-gated sodium channels are believed to play important roles in inflammatory and neuropathic pain. We investigated the effects of anandamide on 4 neuronal sodium channel α subunits, Nav1.2, Nav1.6, Nav1.7, and Nav1.8, to explore the mechanisms underlying the antinociceptive effects of anandamide. METHODS: We studied the effects of anandamide on Nav1.2, Nav1.6, Nav1.7, and Nav1.8 α subunits with ß1 subunits by using whole-cell, 2-electrode, voltage-clamp techniques in Xenopus oocytes. RESULTS: Anandamide inhibited sodium currents of all subunits at a holding potential causing half-maximal current (V1/2) in a concentration-dependent manner. The half-maximal inhibitory concentration values for Nav1.2, Nav1.6, Nav1.7, and Nav1.8 were 17, 12, 27, and 40 µmol/L, respectively, indicating an inhibitory effect on Nav1.6, which showed the highest potency. Anandamide raised the depolarizing shift of the activation curve as well as the hyperpolarizing shift of the inactivation curve in all α subunits, suggesting that sodium current inhibition was due to decreased activation and increased inactivation. Moreover, anandamide showed a use-dependent block in Nav1.2, Nav1.6, and Nav1.7 but not Nav1.8. CONCLUSION: Anandamide inhibited the function of α subunits in neuronal sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8. These results help clarify the mechanisms of the analgesic effects of anandamide.


Asunto(s)
Ácidos Araquidónicos/farmacología , Endocannabinoides/farmacología , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Oocitos/efectos de los fármacos , Alcamidas Poliinsaturadas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Oocitos/metabolismo , Canales de Sodio Activados por Voltaje , Xenopus laevis
20.
Addict Biol ; 18(4): 614-22, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21812868

RESUMEN

In the present study, we investigated the possible development of tolerance to the antihyperalgesic effect of µ-opioid receptor (MOR) agonists under a neuropathic pain-like state. Repeated treatment with fentanyl, but not morphine or oxycodone, produced a rapid development of tolerance to its antihyperalgesic effect in mice with sciatic nerve ligation. Like the behavioral study, G-protein activation induced by fentanyl was significantly reduced in membranes obtained from the spinal cord of nerve-ligated mice with in vivo repeated injection of fentanyl. In ß-endorphin-knockout mice with nerve ligation, developed tolerance to the antihyperalgesic effect of fentanyl was abolished, and reduced G-protein activation by fentanyl after nerve ligation with fentanyl was reversed to the normal level. The present findings indicate that released ß-endorphin within the spinal cord may be implicated in the rapid development of tolerance to fentanyl under a neuropathic pain-like state.


Asunto(s)
Analgésicos Opioides/farmacología , Tolerancia a Medicamentos/fisiología , Fentanilo/farmacología , Neuralgia/tratamiento farmacológico , Receptores Opioides mu/agonistas , Médula Espinal/metabolismo , betaendorfina/fisiología , Analgésicos Opioides/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Femenino , Fentanilo/administración & dosificación , Proteínas de Unión al GTP/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Calor , Hiperalgesia/tratamiento farmacológico , Inyecciones Subcutáneas , Ligadura , Masculino , Ratones , Ratones Noqueados , Morfina/administración & dosificación , Morfina/farmacología , Neuralgia/metabolismo , Oxicodona/administración & dosificación , Oxicodona/farmacología , Dimensión del Dolor/métodos , Umbral del Dolor/efectos de los fármacos , Ensayo de Unión Radioligante , Receptores Opioides mu/fisiología , Nervio Ciático/cirugía , Cloruro de Sodio/administración & dosificación , betaendorfina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA