Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(7999): 670-677, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297122

RESUMEN

Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.


Asunto(s)
Oxígeno , Complejo de Proteína del Fotosistema II , Biocatálisis/efectos de la radiación , Calcio/metabolismo , Cristalografía , Transporte de Electrón/efectos de la radiación , Electrones , Manganeso/metabolismo , Oxidación-Reducción/efectos de la radiación , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Protones , Factores de Tiempo , Tirosina/metabolismo , Agua/química , Agua/metabolismo
2.
Nature ; 601(7893): 360-365, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35046599

RESUMEN

Inorganic-organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties1. This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe radiation sensitivity, interfering with the standard techniques of single-crystal X-ray diffraction2,3 and electron microdiffraction4-11. Here we demonstrate small-molecule serial femtosecond X-ray crystallography (smSFX) for the determination of material crystal structures from microcrystals. We subjected microcrystalline suspensions to X-ray free-electron laser radiation12,13 and obtained thousands of randomly oriented diffraction patterns. We determined unit cells by aggregating spot-finding results into high-resolution powder diffractograms. After indexing the sparse serial patterns by a graph theory approach14, the resulting datasets can be solved and refined using standard tools for single-crystal diffraction data15-17. We describe the ab initio structure solutions of mithrene (AgSePh)18-20, thiorene (AgSPh) and tethrene (AgTePh), of which the latter two were previously unknown structures. In thiorene, we identify a geometric change in the silver-silver bonding network that is linked to its divergent optoelectronic properties20. We demonstrate that smSFX can be applied as a general technique for structure determination of beam-sensitive microcrystalline materials at near-ambient temperature and pressure.


Asunto(s)
Electrones , Plata , Cristalografía por Rayos X , Rayos Láser , Difracción de Rayos X
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197289

RESUMEN

Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.


Asunto(s)
Canales de Cloruro/química , Rayos Láser , Canales de Cloruro/metabolismo , Cristalografía , Citoplasma/metabolismo , Transporte Iónico , Luz , Conformación Proteica , Rayos X
4.
J Synchrotron Radiat ; 30(Pt 5): 1013-1022, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37610343

RESUMEN

The BL09XU beamline of SPring-8 has been reorganized into a beamline dedicated for hard X-ray photoelectron spectroscopy (HAXPES) to provide advanced capabilities with upgraded optical instruments. The beamline has two HAXPES analyzers to cover a wide range of applications. Two sets of double channel-cut crystal monochromators with the Si(220) and (311) reflections were installed to perform resonant HAXPES analyses with a total energy resolution of less than 300 meV over a wide energy range (4.9-12 keV) while achieving a fixed-exit condition. A double-crystal X-ray phase retarder using diamond crystals controls the polarization state with a high degree of polarization over 0.9 in the wide energy range 5.9-9.5 keV. Each HAXPES analyzer is equipped with a focusing mirror to provide a high-flux microbeam. The design and performance of the upgraded instruments are presented.

5.
Nature ; 543(7643): 131-135, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28219079

RESUMEN

Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique µ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.


Asunto(s)
Cristalografía/métodos , Electrones , Rayos Láser , Luz , Oxígeno/química , Oxígeno/efectos de la radiación , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/efectos de la radiación , Biocatálisis/efectos de la radiación , Cianobacterias/química , Transporte de Electrón/efectos de la radiación , Análisis de Fourier , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/efectos de la radiación , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Temperatura , Factores de Tiempo , Agua/química , Agua/metabolismo
6.
J Synchrotron Radiat ; 29(Pt 5): 1265-1272, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073886

RESUMEN

In this study, double-multilayer monochromators that generate intense, high-energy, pink X-ray beams are designed, installed and evaluated at the SPring-8 medium-length (215 m) bending-magnet beamline BL20B2 for imaging applications. Two pairs of W/B4C multilayer mirrors are designed to utilize photon energies of 110 keV and 40 keV with bandwidths of 0.8% and 4.8%, respectively, which are more than 100 times larger when compared with the Si double-crystal monochromator (DCM) with a bandwidth of less than 0.01%. At an experimental hutch located 210 m away from the source, a large and uniform beam of size 14 mm (V) × 300 mm (H) [21 mm (V) × 300 mm (H)] was generated with a high flux density of 1.6 × 109 photons s-1 mm-2 (6.9 × 1010 photons s-1 mm-2) at 110 keV (40 keV), which marked a 300 (190) times increase in the photon flux when compared with a DCM with Si 511 (111) diffraction. The intense pink beams facilitate advanced X-ray imaging for large-sized objects such as fossils, rocks, organs and electronic devices with high speed and high spatial resolution.


Asunto(s)
Fotones , Sincrotrones , Rayos X
7.
Proc Natl Acad Sci U S A ; 114(51): 13357-13362, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-28835537

RESUMEN

The M2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across a membrane. Ordered water molecules arranged in "wires" inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collected to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inwardopen state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inwardopen state is less stable. These studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.


Asunto(s)
Protones , Proteínas de la Matriz Viral/química , Secuencias de Aminoácidos , Enlace de Hidrógeno , Activación del Canal Iónico , Simulación de Dinámica Molecular , Dominios Proteicos , Electricidad Estática , Temperatura , Proteínas de la Matriz Viral/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(11): 2928-33, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929369

RESUMEN

Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.


Asunto(s)
Alcaligenes faecalis/enzimología , Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Nitrito Reductasas/química , Alcaligenes faecalis/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Cobre/química , Cristalografía por Rayos X/instrumentación , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Mutación Puntual , Conformación Proteica , Protones , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad
9.
Proc Natl Acad Sci U S A ; 113(46): 13039-13044, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799539

RESUMEN

The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/química , Cristalización , Cristalografía/métodos , Detergentes/química , Electrones , Halobacterium , Rayos Láser , Conformación Proteica , Ácidos Triyodobenzoicos/química
10.
Nat Methods ; 12(1): 61-3, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25384243

RESUMEN

Serial femtosecond X-ray crystallography (SFX) has revolutionized atomic-resolution structural investigation by expanding applicability to micrometer-sized protein crystals, even at room temperature, and by enabling dynamics studies. However, reliable crystal-carrying media for SFX are lacking. Here we introduce a grease-matrix carrier for protein microcrystals and obtain the structures of lysozyme, glucose isomerase, thaumatin and fatty acid-binding protein type 3 under ambient conditions at a resolution of or finer than 2 Å.


Asunto(s)
Cristalografía por Rayos X/métodos , Lubricantes , Proteínas/química , Isomerasas Aldosa-Cetosa/química , Cristalización , Proteína 3 de Unión a Ácidos Grasos , Proteínas de Unión a Ácidos Grasos/química , Rayos Láser , Aceite Mineral , Muramidasa/química , Proteínas de Plantas/química
11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2519-25, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627659

RESUMEN

Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Šis successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.


Asunto(s)
Cloro/química , Cristalografía por Rayos X/métodos , Muramidasa/química , Azufre/química , Secuencias de Aminoácidos , Animales , Pollos , Clara de Huevo/química , Modelos Moleculares , Datos de Secuencia Molecular , Muramidasa/aislamiento & purificación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
J Synchrotron Radiat ; 22(3): 532-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931065

RESUMEN

An experimental system for serial femtosecond crystallography using an X-ray free-electron laser (XFEL) has been developed. It basically consists of a sample chamber, fluid injectors and a two-dimensional detector. The chamber and the injectors are operated under helium atmosphere at 1 atm. The ambient pressure operation facilitates applications to fluid samples. Three kinds of injectors are employed to feed randomly oriented crystals in aqueous solution or highly viscous fluid. Experiments on lysozyme crystals were performed by using the 10 keV XFEL of the SPring-8 Angstrom Compact free-electron LAser (SACLA). The structure of model protein lysozyme from 1 µm crystals at a resolution of 2.4 Šwas obtained.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Electrones , Rayos Láser , Muramidasa/ultraestructura , Aceleradores de Partículas/instrumentación , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Japón , Iluminación/instrumentación , Muramidasa/química , Conformación Proteica , Rayos X
13.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 914-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633602

RESUMEN

Information from structural genomics experiments at the RIKEN SPring-8 Center, Japan has been compiled and published as an integrated database. The contents of the database are (i) experimental data from nine species of bacteria that cover a large variety of protein molecules in terms of both evolution and properties (http://database.riken.jp/db/bacpedia), (ii) experimental data from mutant proteins that were designed systematically to study the influence of mutations on the diffraction quality of protein crystals (http://database.riken.jp/db/bacpedia) and (iii) experimental data from heavy-atom-labelled proteins from the heavy-atom database HATODAS (http://database.riken.jp/db/hatodas). The database integration adopts the semantic web, which is suitable for data reuse and automatic processing, thereby allowing batch downloads of full data and data reconstruction to produce new databases. In addition, to enhance the use of data (i) and (ii) by general researchers in biosciences, a comprehensible user interface, Bacpedia (http://bacpedia.harima.riken.jp), has been developed.


Asunto(s)
Bases de Datos Factuales , Proteínas/química , Proteínas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalización , Genómica/métodos , Internet , Japón , Interfaz Usuario-Computador
14.
Biomacromolecules ; 14(10): 3635-42, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24000943

RESUMEN

Chemoenzymatic synthesis of peptides is a green and clean chemical reaction that offers high yields without using organic synthesis and serves as an alternative to traditional peptide synthesis methods. This report describes the chemoenzymatic synthesis of oligo(L-phenylalanine) mediated by proteinase K from Tritirachium album, which is one of the most widely used proteases in molecular biological studies. The synthesized linear oligo-phenylalanine showed a unique self-assembly in aqueous solutions. To further functionalize linear oligo(L-phenylalanine) as a low-molecular-weight gelator, it was cosynthesized with tris(2-aminoethyl)amine to obtain star-oligo(L-phenylalanine), which was bioconjugated to demonstrate its self-assembly into fluorescent fibers. The self-assembled fibers of star-oligo(L-phenylalanine) formed fibrous networks with various branching ratios, which depended on the molecular weights and molecular aspect ratios of star-oligo(L-phenylalanine). This is the first study to demonstrate that proteinase K is a suitable enzyme for chemoenzymatic cosynthesis of oligopeptides and star-shaped heteropeptides.


Asunto(s)
Biocatálisis , Endopeptidasa K/metabolismo , Hongos Mitospóricos/enzimología , Fenilalanina/biosíntesis , Endopeptidasa K/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Tamaño de la Partícula , Fenilalanina/química , Propiedades de Superficie , Temperatura
15.
IUCrJ ; 10(Pt 1): 103-117, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598506

RESUMEN

Serial femtosecond crystallography for small-unit-cell systems has so far seen very limited application despite obvious scientific possibilities. This is because reliable data reduction has not been available for these challenging systems. In particular, important intensity corrections such as the partiality correction critically rely on accurate determination of the crystal orientation, which is complicated by the low number of diffraction spots for small-unit-cell crystals. A data reduction pipeline capable of fully automated handling of all steps of data reduction from spot harvesting to merged structure factors has been developed. The pipeline utilizes sparse indexing based on known unit-cell parameters, seed-skewness integration, intensity corrections including an overlap-based combined Ewald sphere width and partiality correction, and a dynamically adjusted post-refinement routine. Using the pipeline, data measured on the compound K4[Pt2(P2O5H2)4]·2H2O have been successfully reduced and used to solve the structure to an R1 factor of ∼9.1%. It is expected that the pipeline will open up the field of small-unit-cell serial femtosecond crystallography experiments and allow investigations into, for example, excited states and reaction intermediate chemistry.


Asunto(s)
Cristalografía , Recolección de Datos
16.
Nat Chem ; 15(11): 1549-1558, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37723259

RESUMEN

Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.


Asunto(s)
Proteínas , Cristalografía por Rayos X , Modelos Moleculares , Temperatura , Proteínas/química , Conformación Molecular , Conformación Proteica
17.
J Appl Crystallogr ; 56(Pt 5): 1361-1370, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791355

RESUMEN

Serial crystallography has emerged as an important tool for structural studies of integral membrane proteins. The ability to collect data from micrometre-sized weakly diffracting crystals at room temperature with minimal radiation damage has opened many new opportunities in time-resolved studies and drug discovery. However, the production of integral membrane protein microcrystals in lipidic cubic phase at the desired crystal density and quantity is challenging. This paper introduces VIALS (versatile approach to high-density microcrystals in lipidic cubic phase for serial crystallography), a simple, fast and efficient method for preparing hundreds of microlitres of high-density microcrystals suitable for serial X-ray diffraction experiments at both synchrotron and free-electron laser sources. The method is also of great benefit for rational structure-based drug design as it facilitates in situ crystal soaking and rapid determination of many co-crystal structures. Using the VIALS approach, room-temperature structures are reported of (i) the archaerhodopsin-3 protein in its dark-adapted state and 110 ns photocycle intermediate, determined to 2.2 and 1.7 Å, respectively, and (ii) the human A2A adenosine receptor in complex with two different ligands determined to a resolution of 3.5 Å.

18.
Sci Adv ; 9(49): eadh4179, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064560

RESUMEN

Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.


Asunto(s)
Monóxido de Carbono , Complejo IV de Transporte de Electrones , Complejo IV de Transporte de Electrones/metabolismo , Dominio Catalítico , Monóxido de Carbono/química , Cristalografía , Oxidación-Reducción , Oxígeno/metabolismo
19.
Science ; 382(6674): eadd7795, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033054

RESUMEN

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.


Asunto(s)
Proteínas Arqueales , Reparación del ADN , Desoxirribodipirimidina Fotoliasa , Methanosarcina , Dímeros de Pirimidina , Proteínas Arqueales/química , Catálisis , Cristalografía/métodos , Desoxirribodipirimidina Fotoliasa/química , ADN/química , ADN/efectos de la radiación , Methanosarcina/enzimología , Conformación Proteica , Dímeros de Pirimidina/química , Rayos Ultravioleta
20.
Acta Crystallogr D Struct Biol ; 78(Pt 12): 1428-1438, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458614

RESUMEN

The mechanisms by which enzymes promote catalytic reactions efficiently through their structural changes remain to be fully elucidated. Recent progress in serial femtosecond X-ray crystallography (SFX) using X-ray free-electron lasers (XFELs) has made it possible to address these issues. In particular, mix-and-inject serial crystallography (MISC) is promising for the direct observation of structural changes associated with ongoing enzymic reactions. In this study, SFX measurements using a liquid-jet system were performed on microcrystals of bacterial copper amine oxidase anaerobically premixed with a substrate amine solution. The structure determined at 1.94 Šresolution indicated that the peptidyl quinone cofactor is in equilibrium between the aminoresorcinol and semiquinone radical intermediates, which accumulate only under anaerobic single-turnover conditions. These results show that anaerobic conditions were well maintained throughout the liquid-jet SFX measurements, preventing the catalytic intermediates from reacting with dioxygen. These results also provide a necessary framework for performing time-resolved MISC to study enzymic reaction mechanisms under anaerobic conditions.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Cristalografía por Rayos X , Catálisis , Aminas , Cetonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA