Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(1): 162-183, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901538

RESUMEN

Studies of the genetics of psychiatric disorders have become one of the most exciting and fast-moving areas in human genetics. A decade ago, there were few reproducible findings, and now there are hundreds. In this review, we focus on the findings that have illuminated the genetic architecture of psychiatric disorders and the challenges of using these findings to inform our understanding of pathophysiology. The evidence is now overwhelming that psychiatric disorders are "polygenic"-that many genetic loci contribute to risk. With the exception of a subset of those with ASD, few individuals with a psychiatric disorder have a single, deterministic genetic cause; rather, developing a psychiatric disorder is influenced by hundreds of different genetic variants, consistent with a polygenic model. As progressively larger studies have uncovered more about their genetic architecture, the need to elucidate additional architectures has become clear. Even if we were to have complete knowledge of the genetic architecture of a psychiatric disorder, full understanding requires deep knowledge of the functional genomic architecture-the implicated loci impact regulatory processes that influence gene expression and the functional coordination of genes that control biological processes. Following from this is cellular architecture: of all brain regions, cell types, and developmental stages, where and when are the functional architectures operative? Given that the genetic architectures of different psychiatric disorders often strongly overlap, we are challenged to re-evaluate and refine the diagnostic architectures of psychiatric disorders using fundamental genetic and neurobiological data.


Asunto(s)
Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Alelos , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Salud Mental , Herencia Multifactorial/genética
2.
Cell ; 179(3): 589-603, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31607513

RESUMEN

Genome-wide association studies (GWASs) have focused primarily on populations of European descent, but it is essential that diverse populations become better represented. Increasing diversity among study participants will advance our understanding of genetic architecture in all populations and ensure that genetic research is broadly applicable. To facilitate and promote research in multi-ancestry and admixed cohorts, we outline key methodological considerations and highlight opportunities, challenges, solutions, and areas in need of development. Despite the perception that analyzing genetic data from diverse populations is difficult, it is scientifically and ethically imperative, and there is an expanding analytical toolbox to do it well.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Técnicas de Genotipaje/métodos , Genética Humana/métodos , Exactitud de los Datos , Variación Genética , Genética de Población/métodos , Genética de Población/normas , Estudio de Asociación del Genoma Completo/normas , Técnicas de Genotipaje/normas , Genética Humana/normas , Humanos , Linaje
3.
Cell ; 173(7): 1573-1580, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906445

RESUMEN

The evidence that most adult-onset common diseases have a polygenic genetic architecture fully consistent with robust biological systems supported by multiple back-up mechanisms is now overwhelming. In this context, we consider the recent "omnigenic" or "core genes" model. A key assumption of the model is that there is a relatively small number of core genes relevant to any disease. While intuitively appealing, this model may underestimate the biological complexity of common disease, and therefore, the goal to discover core genes should not guide experimental design. We consider other implications of polygenicity, concluding that a focus on patient stratification is needed to achieve the goals of precision medicine.


Asunto(s)
Enfermedad/genética , Modelos Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Medicina de Precisión
4.
Nature ; 608(7923): 546-551, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948635

RESUMEN

Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra1, thereby reducing albedo2-4, altering carbon cycling4 and further changing climate1-4, yet the patterns and processes of this biome shift remain unclear5. Climate warming, required for previous boreal advances6-17, is not sufficient by itself for modern range expansion of conifers forming forest-tundra ecotones5,12-15,17-20. No high-latitude population of conifers, the dominant North American Arctic treeline taxon, has previously been documented5 advancing at rates following the last glacial maximum (LGM)6-8. Here we describe a population of white spruce (Picea glauca) advancing at post-LGM rates7 across an Arctic basin distant from established treelines and provide evidence of mechanisms sustaining the advance. The population doubles each decade, with exponential radial growth in the main stems of individual trees correlating positively with July air temperature. Lateral branches in adults and terminal leaders in large juveniles grow almost twice as fast as those at established treelines. We conclude that surpassing temperature thresholds1,6-17, together with winter winds facilitating long-distance dispersal, deeper snowpack and increased soil nutrient availability promoting recruitment and growth, provides sufficient conditions for boreal forest advance. These observations enable forecast modelling with important insights into the environmental conditions converting tundra into forest.


Asunto(s)
Calentamiento Global , Picea , Taiga , Temperatura , Árboles , Tundra , Aclimatación , Regiones Árticas , Modelos Climáticos , Calentamiento Global/estadística & datos numéricos , Modelos Biológicos , Picea/crecimiento & desarrollo , Picea/metabolismo , Estaciones del Año , Nieve , Suelo/química , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Viento
5.
Mol Cell ; 79(3): 521-534.e15, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32592681

RESUMEN

Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input "easy Hi-C" protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.


Asunto(s)
Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Neurogénesis/genética , Regiones Promotoras Genéticas , Adulto , Línea Celular , Cerebro/citología , Cerebro/crecimiento & desarrollo , Cerebro/metabolismo , Cromatina/ultraestructura , Mapeo Cromosómico , Feto , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/metabolismo , Lóbulo Temporal/citología , Lóbulo Temporal/crecimiento & desarrollo , Lóbulo Temporal/metabolismo , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Am J Hum Genet ; 110(1): 30-43, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608683

RESUMEN

Gene-based association tests aggregate multiple SNP-trait associations into sets defined by gene boundaries and are widely used in post-GWAS analysis. A common approach for gene-based tests is to combine SNPs associations by computing the sum of χ2 statistics. However, this strategy ignores the directions of SNP effects, which could result in a loss of power for SNPs with masking effects, e.g., when the product of two SNP effects and the linkage disequilibrium (LD) correlation is negative. Here, we introduce "mBAT-combo," a set-based test that is better powered than other methods to detect multi-SNP associations in the context of masking effects. We validate the method through simulations and applications to real data. We find that of 35 blood and urine biomarker traits in the UK Biobank, 34 traits show evidence for masking effects in a total of 4,273 gene-trait pairs, indicating that masking effects is common in complex traits. We further validate the improved power of our method in height, body mass index, and schizophrenia with different GWAS sample sizes and show that on average 95.7% of the genes detected only by mBAT-combo with smaller sample sizes can be identified by the single-SNP approach with a 1.7-fold increase in sample sizes. Eleven genes significant only in mBAT-combo for schizophrenia are confirmed by functionally informed fine-mapping or Mendelian randomization integrating gene expression data. The framework of mBAT-combo can be applied to any set of SNPs to refine trait-association signals hidden in genomic regions with complex LD structures.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Desequilibrio de Ligamiento , Genómica , Polimorfismo de Nucleótido Simple/genética
7.
Mol Psychiatry ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355785

RESUMEN

Bipolar disorder (BD) features heterogenous clinical presentation and course of illness. It remains unclear how subphenotypes associate with genetic loadings of BD and related psychiatric disorders. We investigated associations between the subphenotypes and polygenic risk scores (PRS) for BD, schizophrenia, and major depressive disorder (MDD) in two BD cohorts from Sweden (N = 5180) and the UK (N = 2577). Participants were assessed through interviews and medical records for inter-episode remission, psychotic features during mood episodes, global assessment of functioning (GAF, function and symptom burden dimensions), and comorbid anxiety disorders. Meta-analyses based on both cohorts showed that inter-episode remission and GAF-function were positively correlated with BD-PRS but negatively correlated with schizophrenia-PRS (SCZ-PRS) and MDD-PRS. Moreover, BD-PRS was negatively, and MDD-PRS positively, associated with the risk of comorbid anxiety disorders. Finally, SCZ-PRS was positively associated with psychotic symptoms during mood episodes. Assuming a higher PRS of certain psychiatric disorders in cases with a positive family history, we further tested the associations between subphenotypes in index BD people and occurrence of BD, schizophrenia, or MDD in their relatives using Swedish national registries. BD patients with a relative diagnosed with BD had: (1) higher GAF and lower risk of comorbid anxiety than those with a relative diagnosed with schizophrenia or MDD, (2) lower risk of psychotic symptoms than those with a relative diagnosed with schizophrenia. Our findings shed light on the genetic underpinnings of the heterogeneity in clinical manifestations and course of illness in BD, which ultimately provide insights for developing personalized approaches to the diagnosis and treatment.

8.
PLoS Genet ; 18(3): e1010102, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259165

RESUMEN

Hi-C data provide population averaged estimates of three-dimensional chromatin contacts across cell types and states in bulk samples. Effective analysis of Hi-C data entails controlling for the potential confounding factor of differential cell type proportions across heterogeneous bulk samples. We propose a novel unsupervised deconvolution method for inferring cell type composition from bulk Hi-C data, the Two-step Hi-c UNsupervised DEconvolution appRoach (THUNDER). We conducted extensive simulations to test THUNDER based on combining two published single-cell Hi-C (scHi-C) datasets. THUNDER more accurately estimates the underlying cell type proportions compared to reference-free methods (e.g., TOAST, and NMF) and is more robust than reference-dependent methods (e.g. MuSiC). We further demonstrate the practical utility of THUNDER to estimate cell type proportions and identify cell-type-specific interactions in Hi-C data from adult human cortex tissue samples. THUNDER will be a useful tool in adjusting for varying cell type composition in population samples, facilitating valid and more powerful downstream analysis such as differential chromatin organization studies. Additionally, THUNDER estimated contact profiles provide a useful exploratory framework to investigate cell-type-specificity of the chromatin interactome while experimental data is still rare.


Asunto(s)
Cromatina , Cromatina/genética , Humanos
9.
Hum Mol Genet ; 31(4): 651-664, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34523677

RESUMEN

The environment and events that we are exposed to in utero, during birth and in early childhood influence our future physical and mental health. The underlying mechanisms that lead to these outcomes are unclear, but long-term changes in epigenetic marks, such as DNA methylation, could act as a mediating factor or biomarker. DNA methylation data were assayed at 713 522 CpG sites from 9537 participants of the Generation Scotland: Scottish Family Health Study, a family-based cohort with extensive genetic, medical, family history and lifestyle information. Methylome-wide association studies of eight early life environment phenotypes and two adult mental health phenotypes (major depressive disorder and brief resilience scale) were conducted using DNA methylation data collected from adult whole blood samples. Two genes involved with different developmental pathways (PRICKLE2, Prickle Planar Cell Polarity Protein 2 and ABI1, Abl-Interactor-1) were annotated to CpG sites associated with preterm birth (P < 1.27 × 10-9). A further two genes important to the development of sensory pathways (SOBP, Sine Oculis Binding Protein Homolog and RPGRIP1, Retinitis Pigmentosa GTPase Regulator Interacting Protein) were annotated to sites associated with low birth weight (P < 4.35 × 10-8). The examination of methylation profile scores and genes and gene-sets annotated from associated CpGs sites found no evidence of overlap between the early life environment and mental health conditions. Birth date was associated with a significant difference in estimated lymphocyte and neutrophil counts. Previous studies have shown that early life environments influence the risk of developing mental health disorders later in life; however, this study found no evidence that this is mediated by stable changes to the methylome detectable in peripheral blood.


Asunto(s)
Trastorno Depresivo Mayor , Nacimiento Prematuro , Proteínas Adaptadoras Transductoras de Señales , Preescolar , Islas de CpG/genética , Proteínas del Citoesqueleto , Metilación de ADN/genética , Epigénesis Genética , Epigenoma , Femenino , Humanos , Recién Nacido , Salud Mental , Embarazo
10.
Glob Chang Biol ; 30(6): e17374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863181

RESUMEN

In this Technical Advance, we describe a novel method to improve ecological interpretation of remotely sensed vegetation greenness measurements that involved sampling 24,395 Landsat pixels (30 m) across 639 km of Alaska's central Brooks Range. The method goes well beyond the spatial scale of traditional plot-based sampling and thereby more thoroughly relates ground-based observations to satellite measurements. Our example dataset illustrates that, along the boreal-Arctic boundary, vegetation with the greatest Landsat Normalized Difference Vegetation Index (NDVI) is taller than 1 m, woody, and deciduous; whereas vegetation with lower NDVI tends to be shorter, evergreen, or non-woody. The field methods and associated analyses advance efforts to inform satellite data with ground-based vegetation observations using field samples collected at spatial scales that closely match the resolution of remotely sensed imagery.


Asunto(s)
Imágenes Satelitales , Tundra , Alaska , Regiones Árticas , Tecnología de Sensores Remotos/métodos , Taiga , Monitoreo del Ambiente/métodos
11.
Mol Psychiatry ; 28(1): 475-482, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380236

RESUMEN

Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia. Using genome sequence data from 1154 Swedish schizophrenia cases and 934 ancestry-matched population controls, we have detected genome-wide rare (<0.1% population frequency) TREs that have motifs with a length of 2-20 base pairs. We find that the proportion of individuals carrying rare TREs is significantly higher in the schizophrenia group. There is a significantly higher burden of rare TREs in schizophrenia cases than in controls in genic regions, particularly in postsynaptic genes, in genes overlapping brain expression quantitative trait loci, and in brain-expressed genes that are differentially expressed between schizophrenia cases and controls. We demonstrate that TRE-associated genes are more constrained and primarily impact synaptic and neuronal signaling functions. These results have been replicated in an independent Canadian sample that consisted of 252 schizophrenia cases of European ancestry and 222 ancestry-matched controls. Our results support the involvement of rare TREs in schizophrenia etiology.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Canadá , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética
12.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526672

RESUMEN

A major challenge in predicting species' distributional responses to climate change involves resolving interactions between abiotic and biotic factors in structuring ecological communities. This challenge reflects the classical conceptualization of species' regional distributions as simultaneously constrained by climatic conditions, while by necessity emerging from local biotic interactions. A ubiquitous pattern in nature illustrates this dichotomy: potentially competing species covary positively at large scales but negatively at local scales. Recent theory poses a resolution to this conundrum by predicting roles of both abiotic and biotic factors in covariation of species at both scales, but empirical tests have lagged such developments. We conducted a 15-y warming and herbivore-exclusion experiment to investigate drivers of opposing patterns of covariation between two codominant arctic shrub species at large and local scales. Climatic conditions and biotic exploitation mediated both positive covariation between these species at the landscape scale and negative covariation between them locally. Furthermore, covariation between the two species conferred resilience in ecosystem carbon uptake. This study thus lends empirical support to developing theoretical solutions to a long-standing ecological puzzle, while highlighting its relevance to understanding community compositional responses to climate change.


Asunto(s)
Betula/fisiología , Calentamiento Global , Herbivoria/fisiología , Salix/fisiología , Regiones Árticas , Geografía , Suelo/química , Especificidad de la Especie , Temperatura , Factores de Tiempo , Agua
13.
Mol Psychiatry ; 27(6): 2858-2867, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35365803

RESUMEN

Postpartum depression (PPD) affects 1 in 7 women and has negative mental health consequences for both mother and child. However, the precise biological mechanisms behind the disorder are unknown. Therefore, we performed the largest transcriptome-wide association study (TWAS) for PPD (482 cases, 859 controls) to date using RNA-sequencing in whole blood and deconvoluted cell types. No transcriptional changes were observed in whole blood. B-cells showed a majority of transcriptome-wide significant results (891 transcripts representing 789 genes) with pathway analyses implicating altered B-cell activation and insulin resistance. Integration of other data types revealed cell type-specific DNA methylation loci and disease-associated eQTLs (deQTLs), but not hormones/neuropeptides (estradiol, progesterone, oxytocin, BDNF), serve as regulators for part of the transcriptional differences between cases and controls. Further, deQTLs were enriched for several brain region-specific eQTLs, but no overlap with MDD risk loci was observed. Altogether, our results constitute a convergence of evidence for pathways most affected in PPD with data across different biological mechanisms.


Asunto(s)
Depresión Posparto , Estudio de Asociación del Genoma Completo , Resistencia a la Insulina , Depresión Posparto/genética , Depresión Posparto/metabolismo , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Resistencia a la Insulina/genética , Transcriptoma/genética
14.
Mol Psychiatry ; 27(6): 2803-2812, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35322200

RESUMEN

Schizophrenia is an idiopathic psychiatric disorder with a high degree of polygenicity. Evidence from genetics, single-cell transcriptomics, and pharmacological studies suggest an important, but untested, overlap between genes involved in the etiology of schizophrenia and the cellular mechanisms of action of antipsychotics. To directly compare genes with antipsychotic-induced differential expression to genes involved in schizophrenia, we applied single-cell RNA-sequencing to striatal samples from male C57BL/6 J mice chronically exposed to a typical antipsychotic (haloperidol), an atypical antipsychotic (olanzapine), or placebo. We identified differentially expressed genes in three cell populations identified from the single-cell RNA-sequencing (medium spiny neurons [MSNs], microglia, and astrocytes) and applied multiple analysis pipelines to contextualize these findings, including comparison to GWAS results for schizophrenia. In MSNs in particular, differential expression analysis showed that there was a larger share of differentially expressed genes (DEGs) from mice treated with olanzapine compared with haloperidol. DEGs were enriched in loci implicated by genetic studies of schizophrenia, and we highlighted nine genes with convergent evidence. Pathway analyses of gene expression in MSNs highlighted neuron/synapse development, alternative splicing, and mitochondrial function as particularly engaged by antipsychotics. In microglia, we identified pathways involved in microglial activation and inflammation as part of the antipsychotic response. In conclusion, single-cell RNA sequencing may provide important insights into antipsychotic mechanisms of action and links to findings from psychiatric genomic studies.


Asunto(s)
Antipsicóticos , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Benzodiazepinas/farmacología , Benzodiazepinas/uso terapéutico , Expresión Génica , Haloperidol/farmacología , Haloperidol/uso terapéutico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Olanzapina , ARN
15.
Mol Psychiatry ; 27(5): 2439-2447, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35379910

RESUMEN

Schizophrenia (SCZ) is highly heterogenous and no subtypes characterizing treatment response or longitudinal course well. Cognitive impairment is a core clinical feature of SCZ and a determinant of poorer outcome. Genetic overlap between SCZ and cognitive traits is complex, with limited studies of comprehensive epidemiological and genomic evidence. To examine the relation between SCZ and three cognitive traits, educational attainment (EDU), premorbid cognitive ability, and intellectual disability (ID), we used two Swedish samples: a national cohort (14,230 SCZ cases and 3,816,264 controls) and a subsample with comprehensive genetic data (4992 cases and 6009 controls). Population-based analyses confirmed worse cognition as a risk factor for SCZ, and the pedigree and SNP-based genetic correlations were comparable. In the genotyped cases, those with high EDU and premorbid cognitive ability tended to have higher polygenetic risk scores (PRS) of EDU and intelligence and fewer rare exonic variants. Finally, by applying an empirical clustering method, we dissected SCZ cases into four replicable subgroups characterized by EDU and ID. In particular, the subgroup with higher EDU in the national cohort had fewer adverse outcomes including long hospitalization and death. In the genotyped subsample, this subgroup had higher PRS of EDU and no excess of rare genetic burdens than controls. In conclusion, we found extensive evidence of a robust relation between cognitive traits and SCZ, underscoring the importance of cognition in dissecting the heterogeneity of SCZ.


Asunto(s)
Discapacidad Intelectual , Esquizofrenia , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Discapacidad Intelectual/genética , Inteligencia/genética , Esquizofrenia/genética , Suecia
16.
Mol Psychiatry ; 27(3): 1667-1675, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34997191

RESUMEN

Major depression (MD) is a heterogeneous disorder; however, the extent to which genetic factors distinguish MD patient subgroups (genetic heterogeneity) remains uncertain. This study sought evidence for genetic heterogeneity in MD. Using UK Biobank cohort, the authors defined 16 MD subtypes within eight comparison groups (vegetative symptoms, symptom severity, comorbid anxiety disorder, age at onset, recurrence, suicidality, impairment, and postpartum depression; N ~ 3000-47000). To compare genetic component of these subtypes, subtype-specific genome-wide association studies were performed to estimate SNP-heritability, and genetic correlations within subtype comparison and with other related disorders/traits. The findings indicated that MD subtypes were divergent in their SNP-heritability, and genetic correlations both within subtype comparisons and with other related disorders/traits. Three subtype comparisons (vegetative symptoms, age at onset, and impairment) showed significant differences in SNP-heritability; while genetic correlations within subtype comparisons ranged from 0.55 to 0.86, suggesting genetic profiles are only partially shared among MD subtypes. Furthermore, subtypes that are more clinically challenging, e.g., early-onset, recurrent, suicidal, more severely impaired, had stronger genetic correlations with other psychiatric disorders. MD with atypical-like features showed a positive genetic correlation (+0.40) with BMI while a negative correlation (-0.09) was found in those without atypical-like features. Novel genomic loci with subtype-specific effects were identified. These results provide the most comprehensive evidence to date for genetic heterogeneity within MD, and suggest that the phenotypic complexity of MD can be effectively reduced by studying the subtypes which share partially distinct etiologies.


Asunto(s)
Trastorno Depresivo Mayor , Depresión/genética , Trastorno Depresivo Mayor/diagnóstico , Femenino , Heterogeneidad Genética , Estudio de Asociación del Genoma Completo , Humanos , Ideación Suicida
17.
Proc Natl Acad Sci U S A ; 117(52): 33334-33344, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318214

RESUMEN

Arctic sea ice extent (SIE) is declining at an accelerating rate with a wide range of ecological consequences. However, determining sea ice effects on tundra vegetation remains a challenge. In this study, we examined the universality or lack thereof in tundra shrub growth responses to changes in SIE and summer climate across the Pan-Arctic, taking advantage of 23 tundra shrub-ring chronologies from 19 widely distributed sites (56°N to 83°N). We show a clear divergence in shrub growth responses to SIE that began in the mid-1990s, with 39% of the chronologies showing declines and 57% showing increases in radial growth (decreasers and increasers, respectively). Structural equation models revealed that declining SIE was associated with rising air temperature and precipitation for increasers and with increasingly dry conditions for decreasers. Decreasers tended to be from areas of the Arctic with lower summer precipitation and their growth decline was related to decreases in the standardized precipitation evapotranspiration index. Our findings suggest that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity.


Asunto(s)
Cubierta de Hielo , Desarrollo de la Planta , Regiones Árticas , Clima , Humedad , Modelos Teóricos , Estaciones del Año , Suelo , Temperatura
18.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35241971

RESUMEN

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

19.
Mol Psychiatry ; 26(8): 4487-4495, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31712719

RESUMEN

A high proportion of those with schizophrenia experience treatment non-response, placing them at higher risk for mortality and suicide attempts, compared to treatment responders. The clinical, social, and economic burden of treatment-resistant schizophrenia (TRS) are substantial. Previous genomic and epidemiological studies of TRS were often limited by sample size or lack of comprehensive genomic data. We aimed to systematically understand the clinical, demographic, and genomic correlates of TRS using epidemiological and genetic epidemiological modelling in a Swedish national population sample (n = 24,706) and then in a subgroup with common variant genetic risk scores, rare copy-number variant burden, and rare exonic burden (n = 4936). Population-based analyses identified increasing schizophrenia family history to be significantly associated with TRS (highest quartile of familial burden vs. lowest: adjusted odds ratio (aOR): 1.31, P = 4.8 × 10-8). In males, a decrease of premorbid IQ of one standard deviation was significantly associated with greater risk of TRS (minimal aOR: 0.94, P = 0.002). In a subset of cases with extensive genomic data, we found no significant association between the genetic risk scores of four psychiatric disorders and two cognitive traits with TRS (schizophrenia genetic risk score: aOR = 1.07, P = 0.067). The association between copy number variant and rare variant burden measures and TRS did not reach the pre-defined statistical significance threshold (all P ≥ 0.005). In conclusion, direct measures of genomic risk were not associated with TRS; however, premorbid IQ in males and schizophrenia family history were significantly correlated with TRS and points to new insights into the architecture of TRS.


Asunto(s)
Esquizofrenia , Variaciones en el Número de Copia de ADN/genética , Genómica , Humanos , Masculino , Esquizofrenia/genética , Esquizofrenia Resistente al Tratamiento , Suecia
20.
Mol Psychiatry ; 26(3): 784-799, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31142819

RESUMEN

An enigma in studies of neuropsychiatric disorders is how to translate polygenic risk into disease biology. For schizophrenia, where > 145 significant GWAS loci have been identified and only a few genes directly implicated, addressing this issue is a particular challenge. We used a combined cellomics and proteomics approach to show that polygenic risk can be disentangled by searching for shared neuronal morphology and cellular pathway phenotypes of candidate schizophrenia risk genes. We first performed an automated high-content cellular screen to characterize neuronal morphology phenotypes of 41 candidate schizophrenia risk genes. The transcription factors Tcf4 and Tbr1 and the RNA topoisomerase Top3b shared a neuronal phenotype marked by an early and progressive reduction in synapse numbers upon knockdown in mouse primary neuronal cultures. Proteomics analysis subsequently showed that these three genes converge onto the syntaxin-mediated neurotransmitter release pathway, which was previously implicated in schizophrenia, but for which genetic evidence was weak. We show that dysregulation of multiple proteins in this pathway may be due to the combined effects of schizophrenia risk genes Tcf4, Tbr1, and Top3b. Together, our data provide new biological functions for schizophrenia risk genes and support the idea that polygenic risk is the result of multiple small impacts on common neuronal signaling pathways.


Asunto(s)
Esquizofrenia , Animales , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Ratones , Herencia Multifactorial/genética , Neuronas , Fenotipo , Polimorfismo de Nucleótido Simple , Proteómica , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA