Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Rev ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866561

RESUMEN

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well-known modification intricately associated with the pathogenesis of CMDs This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies including multi-omics, intestinal microflora analysis, organoid and single-cell sequencing techniques are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assesse the current literatures to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. Significance Statement The comprehensive review covers recent developments in H2S biology and pharmacology in CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.

2.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664801

RESUMEN

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Asunto(s)
Caveolina 1 , Dieta Alta en Grasa , Células Endoteliales , Endotelio Vascular , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III , Vasodilatación , Animales , Masculino , Ratones , Aorta/enzimología , Aorta/fisiopatología , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Caveolina 1/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/efectos de los fármacos , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/enzimología , Obesidad/fisiopatología , Obesidad/metabolismo , Transducción de Señal , Esterol Esterasa/metabolismo , Esterol Esterasa/genética , Ubiquitinación , Vasodilatación/efectos de los fármacos
3.
Am J Physiol Cell Physiol ; 324(4): C856-C877, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878842

RESUMEN

Hydrogen sulfide (H2S) is previously described as a potentially lethal toxic gas. However, this gasotransmitter is also endogenously generated by the actions of cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) in mammalian systems, thus belonging to the family of gasotransmitters after nitric oxide (NO) and carbon monoxide (CO). The physiological or pathological significance of H2S has been extensively expanded for decades. Growing evidence has revealed that H2S exerts cytoprotective functions in the cardiovascular, nervous, and gastrointestinal systems by modulating numerous signaling pathways. With the continuous advancement of microarray and next-generation sequencing technologies, noncoding RNAs (ncRNAs) have gained recognition as key players in human health and diseases due to their considerable potential as predictive biomarkers and therapeutic targets. Coincidentally, H2S and ncRNAs are not independent regulators but interact with each other during the development and progression of human diseases. Specifically, ncRNAs might serve as downstream mediators of H2S or act on H2S-generating enzymes to govern endogenous H2S production. The purpose of this review is to summarize the interactive regulatory roles of H2S and ncRNAs in the initiation and development of various diseases and explore their potential health and therapeutic benefits. This review will also highlight the importance of cross talk between H2S and ncRNAs in disease therapy.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Animales , Humanos , Sulfuro de Hidrógeno/metabolismo , Cistationina , Transducción de Señal , Óxido Nítrico , Cistationina gamma-Liasa , Mamíferos/metabolismo
4.
Cell Mol Biol Lett ; 28(1): 93, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993768

RESUMEN

BACKGROUND: Periostin is an extracellular matrix protein that plays a critical role in cell fate determination and tissue remodeling, but the underlying role and mechanism of periostin in diabetic cardiomyopathy (DCM) are far from clear. Thus, we aimed to clarify the mechanistic participation of periostin in DCM. METHODS: The expression of periostin was examined in DCM patients, diabetic mice and high glucose (HG)-exposed cardiac fibroblasts (CF). Gain- and loss-of-function experiments assessed the potential role of periostin in DCM pathogenesis. RNA sequencing was used to investigate the underlying mechanisms of periostin in DCM. RESULTS: A mouse cytokine antibody array showed that the protein expression of periostin was most significantly upregulated in diabetic mouse heart, and this increase was also observed in patients with DCM or HG-incubated CF. Periostin-deficient mice were protected from diabetes-induced cardiac dysfunction and myocardial damage, while overexpression of periostin held the opposite effects. Hyperglycemia stimulated the expression of periostin in a TGF-ß/Smad-dependent manner. RNA sequencing results showed that periostin upregulated the expression of nucleosome assembly protein 1-like 2 (NAP1L2) which recruited SIRT3 to deacetylate H3K27ac on the promoters of the branched-chain amino acid (BCAA) catabolism-related enzymes BCAT2 and PP2Cm, resulting in BCAA catabolism impairment. Additionally, CF-derived periostin induced hypertrophy, oxidative injury and inflammation in primary cardiomyocytes. Finally, we identified that glucosyringic acid (GA) specifically targeted and inhibited periostin to ameliorate DCM. CONCLUSION: Overall, manipulating periostin expression may function as a promising strategy in the treatment of DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Sirtuina 3 , Humanos , Ratones , Animales , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Sirtuina 3/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Miocitos Cardíacos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos de Cadena Ramificada/farmacología , Fibroblastos/metabolismo
5.
Cardiovasc Drugs Ther ; 36(1): 157-172, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32964302

RESUMEN

Hypertension, a chronic and progressive disease, is an outstanding public health issue that affects nearly 40% of the adults worldwide. The increasing prevalence of hypertension is one of the leading causes of cardiovascular morbidity and mortality. Despite of the available treatment medications, an increasing number of hypertensive individuals continues to have uncontrolled blood pressure. In the vasculature, endothelial cells, vascular smooth muscle cells (VSMCs), and adventitial fibroblasts play a fundamental role in vascular homeostasis. The aberrant interactions between vascular cells might lead to hypertension and vascular remodeling. Identification of the precise mechanisms of vascular remodeling may be highly required to develop effective therapeutic approaches for hypertension. Recently, extracellular vesicle-mediated transfer of proteins or noncoding RNAs (ncRNAs) between vascular cells holds promise for the treatment of hypertension. Especially, extracellular vesicle-packaging ncRNAs have gained enormous attention of basic and clinical scientists because of their tremendous potential to act as novel clinical biomarkers and therapeutic targets of hypertension. Here we will discuss the current findings focusing on the emerging roles of extracellular vesicle-carrying ncRNAs in the pathologies of hypertension and its associated vascular remodeling. Furthermore, we will highlight the potential of extracellular vesicles and ncRNAs as biomarkers and therapeutic targets for hypertension. The future research directions on the challenges and perspectives of extracellular vesicles and ncRNAs in hypertensive vascular remodeling are also proposed.


Asunto(s)
Vesículas Extracelulares/metabolismo , Hipertensión/terapia , ARN no Traducido/genética , Animales , Comunicación Celular/fisiología , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Humanos , Hipertensión/genética , Hipertensión/fisiopatología , Miocitos del Músculo Liso/citología , Remodelación Vascular/fisiología
6.
Rev Cardiovasc Med ; 22(4): 1361-1381, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34957777

RESUMEN

Due to their high prevalence and incidence, diabetes and atherosclerosis are increasingly becoming global public health concerns. Atherosclerosis is one of the leading causes of morbidity and disability in type 1 and/or type 2 diabetes patients. Atherosclerosis risk in diabetic patients is obviously higher than that of non-diabetic individuals. Diabetes-related glycolipid metabolism disorder has been shown to play a central role in atherosclerosis development and progression. Hyperglycemia and dyslipidemia increase the risks for atherosclerosis and plaque necrosis through multiple signaling pathways, such as a prolonged increase in reactive oxygen species (ROS) and inflammatory factors in cardiovascular cells. Notwithstanding the great advances in the understanding of the pathologies of diabetes-accelerated atherosclerosis, the current medical treatments for diabetic atherosclerosis hold undesirable side effects. Therefore, there is an urgent demand to identify novel therapeutic targets or alternative strategies to prevent or treat diabetic atherosclerosis. Burgeoning evidence suggests that plant and herbal medicines are closely linked with healthy benefits for diabetic complications, including diabetic atherosclerosis. In this review, we will overview the utilization of plant and herbal medicines for the treatment of diabetes-accelerated atherosclerosis. Furthermore, the underlying mechanisms of the ethnopharmacological therapeutic potentials against diabetic atherosclerosis are gathered and reviewed. It is foreseeable that the natural constituents from medicinal plants might be a new hope for the treatment of diabetes-accelerated atherosclerosis.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Dislipidemias , Plantas Medicinales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dislipidemias/diagnóstico , Dislipidemias/tratamiento farmacológico , Dislipidemias/epidemiología , Humanos
7.
Adv Exp Med Biol ; 1315: 51-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34302688

RESUMEN

Glucose and lipids are essential elements for maintaining the body's homeostasis, and their dysfunction may participate in the pathologies of various diseases, particularly diabetes, obesity, metabolic syndrome, cardiovascular ailments, and cancers. Among numerous endogenous mediators, the gasotransmitter hydrogen sulfide (H2S) plays a central role in the maintenance of glucose and lipid homeostasis. Current evidence from both pharmacological studies and transgenic animal models suggest a complex relationship between H2S and metabolic dysregulation, especially in diabetes and obesity. This notion is achieved through tissue-specific expressions and actions of H2S on target metabolic and hormone organs including the pancreas, skeletal muscle, livers, and adipose. In this chapter, we will summarize the roles and mechanisms of H2S in several metabolic organs/tissues that are necessary for glucose and lipid metabolic homeostasis. In addition, future research directions and valuable therapeutic avenues around the pharmacological regulation of H2S in glycolipid metabolism disorder will be also discussed.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Animales , Glucosa , Metabolismo de los Lípidos , Lípidos
8.
Pharmacol Res ; 159: 104961, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32474086

RESUMEN

Cardiovascular diseases are recognized to be a major cause of people morbidity and mortality. A host of stress signals contribute to the pathogenesis of cardiovascular disorders. Deficiency of hydrogen sulfide (H2S) or nitric oxide (NO) coordinately plays essential roles in the development of cardiovascular diseases. Recent studies have shown that interaction between the two gaseostransmitters, H2S and NO, may give rise to nitroxyl (HNO), one-electron-reduced product of NO. HNO is found to exhibit a variety of biological and pharmacological properties including positive inotropy and cardiovascular protective effects, etc. In this review, recent progresses regarding HNO generation, detection, biochemical and pharmacological functions are discussed.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Sistema Cardiovascular/efectos de los fármacos , Óxidos de Nitrógeno/uso terapéutico , Animales , Fármacos Cardiovasculares/efectos adversos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatología , Humanos , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/uso terapéutico , Óxidos de Nitrógeno/efectos adversos , Óxidos de Nitrógeno/metabolismo
9.
Mol Biol Rep ; 47(7): 5535-5547, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32567025

RESUMEN

Endothelial cells are major constituents in the vasculature, and they act as important players in vascular homeostasis via secretion/release of vasodilators and vasoconstrictors. In healthy arteries, endothelial cells play a key role in the regulation of vascular tone, cellular adhesion, and angiogenesis. A shift in the functions of the blood vessels toward vasoconstriction, proinflammatory state, oxidative stress and deficiency of nitric oxide (NO) might lead to endothelial dysfunction, a key event implicated in the pathophysiology of cardiovascular metabolic diseases, including diabetes, atherosclerosis, arterial hypertension and pulmonary arterial hypertension (PAH). Thus, reversibility of endothelial dysfunction may be beneficial for maintaining vascular homeostasis. In recent years, accumulative evidence has documented that noncoding RNAs (ncRNAs) are critically involved in endothelial homeostasis. Specifically, long noncoding RNAs (lncRNAs) and circular RNAs are highly expressed in endothelial cells where they serve as important mediators in normal endothelial functions. Dysregulation of lncRNAs and circular RNAs has been tightly associated with hypertension-related endothelial dysfunction. In this review, we will summarize the current progression and underlying mechanisms of lncRNA and circular RNA in endothelial cell biology under hypertensive conditions. We will also highlight their potential as biomarkers or therapeutic targets for hypertension and its associated endothelial dysfunction.


Asunto(s)
Células Endoteliales/metabolismo , Hipertensión/genética , ARN Circular/genética , ARN Largo no Codificante/genética , Animales , Arterias/metabolismo , Aterosclerosis/genética , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/genética , Diabetes Mellitus/genética , Células Endoteliales/fisiología , Homeostasis/genética , Homeostasis/fisiología , Humanos , Hipertensión/metabolismo , Hipertensión/patología , Óxido Nítrico/metabolismo , Estrés Oxidativo , ARN Circular/metabolismo , ARN Largo no Codificante/metabolismo
10.
J Clin Lab Anal ; 34(11): e23495, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32710445

RESUMEN

BACKGROUND: BTBD7_hsa_circ_0000563, which is located on chromosome 14, contains conserved binding sites with miR-155/130a and RNA-binding proteins according to bioinformatic prediction. We investigated the association of BTBD7_hsa_circ_0000563 expression in coronary artery segments with atherosclerotic stenosis and identified the proteome-wide BTBD7_hsa_circ_0000563-regulated proteins in human coronary artery. METHODS: The atherosclerotic grade and extent in coronary artery segments were determined by hematoxylin and eosin staining. BTBD7_hsa_circ_0000563 expression in eight coronary artery segments from one patient was quantified by RT-qPCR assay. A proteomic approach was adopted to reveal significant differences in protein expression between among four groups differing in their BTBD7_hsa_circ_0000563 expression levels. RESULTS: The RT-qPCR assay revealed that coronary artery segments with severe atherosclerotic stenosis had significantly low BTBD7_hsa_circ_0000563 levels. The proteomic analysis identified 49 differentially expressed proteins among the segment groups with different BTBD7_hsa_circ_0000563 expression levels, of which 10 were downregulated and 39 were upregulated with increases in the BTBD7_hsa_circ_0000563 level. The 10 downregulated proteins were P61626 (LYSC_HUMAN), P02760 (AMBP_HUMAN), Q02985 (FHR3_HUMAN), P01701 (LV151_HUMAN), P06312(KV401_HUMAN), P01624 (KV315_HUMAN), P13671 (CO6_HUMAN), P01700(LV147_HUMAN), Q9Y287(ITM2B_HUMAN), and A0A075B6I0 (LV861_HUMAN). The top 10 upregulated proteins were Q92552 (RT27_HUMAN), Q9UJY1(HSPB8_HUMAN), Q9Y235(ABEC2_HUMAN), P19022 (CADH2_HUMAN), O43837(IDH3B_HUMAN), Q9H479(FN3K_HUMAN), Q9UM22(EPDR1_HUMAN), P48681(NEST_HUMAN), Q9NRP0(OSTC_HUMAN), and Q15628(TRADD_HUMAN). CONCLUSION: BTBD7_hsa_circ_0000563 is involved in the atherosclerotic changes in human coronary artery segments. Verification, mechanistic, and function studies are needed to confirm whether patients with coronary artery disease would benefit from such personalized medicine in the future.


Asunto(s)
Vasos Coronarios , Proteoma , ARN Circular , Anciano , Vasos Coronarios/química , Vasos Coronarios/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas/genética , Proteoma/análisis , Proteoma/genética , Proteoma/metabolismo , Proteómica , ARN Circular/genética , ARN Circular/metabolismo
11.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096924

RESUMEN

Cisplatin, a widely used chemotherapy for the treatment of various tumors, is clinically limited due to its extensive nephrotoxicity. Inflammatory response in tubular cells is a driving force for cisplatin-induced nephrotoxicity. The plant-derived agents are widely used to relieve cisplatin-induced renal dysfunction in preclinical studies. Polysulfide and hydrogen sulfide (H2S) are ubiquitously expressed in garlic, and both of them are documented as potential agents for preventing and treating inflammatory disorders. This study was designed to determine whether polysulfide and H2S could attenuate cisplatin nephrotoxicity through suppression of inflammatory factors. In renal proximal tubular cells, we found that sodium tetrasulfide (Na2S4), a polysulfide donor, and sodium hydrosulfide (NaHS) and GYY4137, two H2S donors, ameliorated cisplatin-caused renal toxicity through suppression of the massive production of inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2). Mechanistically, the anti-inflammatory actions of Na2S4 and H2S may be mediated by persulfidation of signal transducer and activator of transcription 3 (STAT3) and inhibitor kappa B kinase ß (IKKß), followed by decreased phosphorylation of STAT3 and IKKß. Moreover, the nuclear translocation of nuclear transcription factor kappa B (NF-κB), and phosphorylation and degradation of nuclear factor kappa B inhibitor protein alpha (IκBα) induced by cisplatin, were also mitigated by both polysulfide and H2S. In mice, after treatment with polysulfide and H2S donors, cisplatin-associated renal dysfunction was strikingly ameliorated, as evidenced by measurement of serum blood urea nitrogen (BUN) and creatinine levels, renal morphology, and the expression of renal inflammatory factors. Our present work suggests that polysulfide and H2S could afford protection against cisplatin nephrotoxicity, possibly via persulfidating STAT3 and IKKß and inhibiting NF-κB-mediated inflammatory cascade. Our results might shed light on the potential benefits of garlic-derived polysulfide and H2S in chemotherapy-induced renal damage.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Sulfuro de Hidrógeno/farmacología , Sulfuros/farmacología , Lesión Renal Aguda/tratamiento farmacológico , Animales , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Túbulos Renales/citología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Masculino , Ratones Endogámicos C57BL , Nefritis/inducido químicamente , Nefritis/tratamiento farmacológico , Factor de Transcripción STAT3/química , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Adv Exp Med Biol ; 1165: 37-47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31399960

RESUMEN

Arterial hypertension remains to be a serious problem with considerable morbidity and mortality worldwide in the present age. Hypertension is a major risk factor for cardiovascular diseases such as stroke, myocardial infarction, renal failure, and heart failure. Hypertensive nephropathy is the second leading cause of death in chronic kidney disease (CKD) around the world. Long-time hypertension loading results in renal interstitial fibrosis, which is associated with aberrant activation of renal fibroblasts and excessive generation of extracellular matrix (ECM) proteins. Increasing evidence supported that proteinuria, tubular hypertrophy, oxidative stress, activation of renin-aldosterone-angiotensin system (RAAS), collagen turnover, chronic inflammation, and vasoactive substances synergistically contributed to the pathogenesis of hypertensive renal fibrosis. However, the mechanisms involving the pathogenesis of hypertensive renal fibrosis are complex and not fully understood. Also, the effective clinical therapy to halt or even reverse renal fibrosis in hypertension is still limited. In this chapter, we aimed to provide an overview of the main pathophysiologic and mechanistic features of renal fibrosis under hypertensive state. The completion of the studies in these directions would improve our understanding of renal fibrosis in hypertension and also help us better screen treatment strategies for preventing renal destruction associated with hypertension.


Asunto(s)
Hipertensión/complicaciones , Enfermedades Renales/complicaciones , Fibrosis , Humanos , Hipertrofia , Riñón/patología , Estrés Oxidativo , Proteinuria , Sistema Renina-Angiotensina
13.
Molecules ; 24(15)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390847

RESUMEN

Diabetic kidney disease develops in approximately 40% of diabetic patients and is a major cause of chronic kidney diseases (CKD) and end stage kidney disease (ESKD) worldwide. Hydrogen sulfide (H2S), the third gasotransmitter after nitric oxide (NO) and carbon monoxide (CO), is synthesized in nearly all organs, including the kidney. Though studies on H2S regulation of renal physiology and pathophysiology are still in its infancy, emerging evidence shows that H2S production by renal cells is reduced under disease states and H2S donors ameliorate kidney injury. Specifically, aberrant H2S level is implicated in various renal pathological conditions including diabetic nephropathy. This review presents the roles of H2S in diabetic renal disease and the underlying mechanisms for the protective effects of H2S against diabetic renal damage. H2S may serve as fundamental strategies to treat diabetic kidney disease. These H2S treatment modalities include precursors for H2S synthesis, H2S donors, and natural plant-derived compounds. Despite accumulating evidence from experimental studies suggests the potential role of the H2S signaling pathway in the treatment of diabetic nephropathy, these results need further clinical translation. Expanding understanding of H2S in the kidney may be vital to translate H2S to be a novel therapy for diabetic renal disease.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Evaluación Preclínica de Medicamentos , Fibrosis , Humanos , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Redes y Vías Metabólicas/efectos de los fármacos , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxígeno/metabolismo , Podocitos/metabolismo , Podocitos/patología , Sistema Renina-Angiotensina
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2154-2168, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29627363

RESUMEN

The phenotypic transformation from differentiated to dedifferentiated vascular smooth muscle cells (VSMCs) plays a crucial role in VSMC proliferation and vascular remodeling in many cardiovascular diseases including hypertension. Nesfatin-1, a multifunctional adipocytokine, is critically involved in the regulation of blood pressure. However, it is still largely unexplored whether nesfatin-1 is a potential candidate in VSMC phenotypic switch and proliferation in hypertension. Experiments were carried out in Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), human VSMCs and primary rat aortic VSMCs. We showed that the expression of nesfatin-1 was upregulated in media layer of the aorta in SHR and SHR-derived VSMCs. Nesfatin-1 promoted VSMC phenotypic transformation, accelerated cell cycle progression and proliferation. Knockdown of nesfatin-1 inhibited the VSMC phenotype switch from a contractile to a synthetic state, attenuated cell cycle progression and retarded VSMC proliferation in SHR-derived VSMCs. Moreover, nesfatin-1-activated PI3K/Akt/mTOR signaling was abolished by JAK/STAT inhibitor WP1066, and the increased phosphorylation levels of JAK2/STAT3 in response to nesfatin-1 were suppressed by inhibition of PI3K/Akt/mTOR in VSMCs. Pharmacological blockade of the forming feedback loop between PI3K/Akt/mTOR and JAK2/STAT3 prevented the proliferation of nesfatin-1-incubated VSMCs and primary VSMCs from SHR. Chronic intraperitoneal injection of nesfatin-1 caused severe hypertension and cardiovascular remodeling in normal rats. In contrast, silencing of nesfatin-1 gene ameliorated hypertension, phenotype switching, and vascular remodeling in the aorta of SHR. Therefore, our data identified nesfatin-1 as a key modulator in hypertension and vascular remodeling by facilitating VSMC phenotypic switching and proliferation.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Proteínas de Unión al ADN/fisiología , Hipertensión/etiología , Miocitos del Músculo Liso/fisiología , Proteínas del Tejido Nervioso/fisiología , Remodelación Vascular/fisiología , Animales , Aorta/citología , Presión Sanguínea/fisiología , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Hipertensión/patología , Masculino , Músculo Liso Vascular/citología , Nucleobindinas , Fenotipo , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/fisiología
15.
Cell Physiol Biochem ; 44(6): 2269-2280, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29262411

RESUMEN

BACKGROUND/AIMS: Angiotensin (Ang) II plays vital roles in vascular inflammation and remodeling in hypertension. Phenotypic transformation of vascular smooth muscle cells (VSMCs) is a major initiating factor for vascular remodeling. The present study was designed to determine the roles of NLRP3 inflammasome activation in Ang II-induced VSMC phenotypic transformation and vascular remodeling in hypertension. METHODS: Primary VSMCs from the aorta of NLRP3 knockout (NLRP3-/-) mice and wild-type (WT) mice were treated with Ang II for 24 h. Subcutaneous infusion of Ang II via osmotic minipump for 2 weeks was used to induce vascular remodeling and hypertension in WT and NLRP3-/- mice. RESULTS: NLRP3 gene deletion attenuates Ang II-induced NLRP3 inflammasome activation, phenotypic transformation from a contractile phenotype to a synthetic phenotype and proliferation in primary mice VSMCs. Ang II-induced hypertension and vascular remodeling in WT mice were attenuated in NLRP3-/- mice. Furthermore, Ang II-induced NLRP3 inflammasome activation, phenotypic transformation and proliferating cell nuclear antigen (PCNA) upregulation were inhibited in the media of aorta of NLRP3-/- mice. CONCLUSIONS: NLRP3 inflammasome activation contributes to Ang II-induced VSMC phenotypic transformation and proliferation as well as vascular remodeling and hypertension.


Asunto(s)
Angiotensina II/metabolismo , Eliminación de Gen , Hipertensión/genética , Hipertensión/fisiopatología , Músculo Liso Vascular/fisiopatología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Remodelación Vascular , Animales , Presión Sanguínea , Células Cultivadas , Hipertensión/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
16.
Biochem Biophys Res Commun ; 490(3): 629-635, 2017 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-28630004

RESUMEN

Oxidized low-density lipoprotein (ox-LDL) is well known to disrupt normal functionality of endothelium, which plays a prominent role in endothelial dysfunction in many cardiovascular diseases. CO-releasing molecule 2 (CORM-2) is a promising candidate for treatment of cardiovascular diseases. However, it has not been defined whether CORM-2 might improve endothelial injury induced by ox-LDL. The present study was undertaken to determine the regulatory role of CORM-2 in cell injury of ox-LDL-treated human umbilical vein endothelial cells (HUVECs). Our results showed that ox-LDL inhibited the cell proliferation, but promoted apoptosis and release of cytochrome c (cytc) from mitochondrion into cytoplasm, stimulated the cleavage of caspase-3 and mitochondrial permeability transition pore (MPTP) opening. In addition, ox-LDL-incubated HUVECs exhibited excessive reactive oxygen species (ROS), increased protein levels of NADPH oxidase subunits p22phox, p47phox, NOX-2 and activation of Wnt/ß-catenin signaling pathway. However, pretreatment with CORM-2 significantly reduced cell apoptosis, release of cytc from mitochondrion into cytoplasm, MPTP opening and cleavage of caspase-3, suppressed the superoxide anion generation and Wnt/ß-catenin pathway activation in HUVECs response to ox-LDL. Collectively, we provide the evidence that CORM-2 attenuated ox-LDL-mediated endothelial apoptosis and oxidative stress by recovering the mitochondrial function and blocking Wnt/ß-catenin pathway.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Compuestos Organometálicos/farmacología , Sustancias Protectoras/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Citocromos c/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
Int J Mol Sci ; 19(1)2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29280941

RESUMEN

This study was conducted to explore the hypothesis that the endogenous superoxide anions (O2-) and nitric oxide (NO) system of the paraventricular nucleus (PVN) regulates the cardiac sympathetic afferent reflex (CSAR) contributing to sympathoexcitation in obese rats induced by a high-fat diet (42% kcal as fat) for 12 weeks. CSAR was evaluated by monitoring the changes of renal sympathetic nerve activity (RSNA) and the mean arterial pressure (MAP) responses to the epicardial application of capsaicin (CAP) in anaesthetized rats. In obese rats with hypertension (OH group) or without hypertension (OB group), the levels of PVN O2-, angiotensinII (Ang II), Ang II type 1 receptor (AT1R), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were elevated, whereas neural NO synthase (nNOS) and NO were significantly reduced. Moreover, CSAR was markedly enhanced, which promoted the elevation of plasma norepinephrine levels. The enhanced CSAR was attenuated by PVN application of the superoxide scavenger polyethylene glycol-superoxide dismutase (PEG-SOD) and the NO donor sodium nitroprusside (SNP), and was strengthened by the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETC) and the nNOS inhibitor N(ω)-propyl-l-arginine hydrochloride (PLA); conversely, there was a smaller CSAR response to PLA or SNP in rats that received a low-fat (12% kcal) diet. Furthermore, PVN pretreatment with the AT1R antagonist losartan or with PEG-SOD, but not SNP, abolished Ang II-induced CSAR enhancement. These findings suggest that obesity alters the PVN O2- and NO system that modulates CSAR and promotes sympathoexcitation.


Asunto(s)
Corazón/fisiopatología , Óxido Nítrico/metabolismo , Obesidad/fisiopatología , Núcleo Hipotalámico Paraventricular/fisiopatología , Reflejo , Superóxidos/metabolismo , Animales , Presión Sanguínea , Corazón/inervación , Frecuencia Cardíaca , Masculino , Óxido Nítrico/análisis , Obesidad/complicaciones , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxidos/análisis , Sistema Nervioso Simpático/fisiopatología
18.
Biochim Biophys Acta ; 1852(9): 1867-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26111885

RESUMEN

Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5), and contributes to the beneficial effects of exercise on metabolism. Here we report the therapeutical effects of FNDC5/irisin on metabolic derangements and insulin resistance in obesity, and show the lipolysis effect of irisin and its signal molecular mechanism. In obese mice, lentivirus mediated-FNDC5 overexpression enhanced energy expenditure, lipolysis and insulin sensitivity, and reduced hyperlipidemia, hyperglycemia, hyperinsulinism, blood pressure and norepinephrine levels; it increased hormone-sensitive lipase (HSL) expression and phosphorylation, and reduced perilipin level and adipocyte diameter in adipose tissues. Subcutaneous perfusion of irisin reduced hyperlipidemia and hyperglycemia, and improved insulin resistance. Either FNDC5 overexpression or irisin perfusion only induced a tendency toward a slight decrease in body weight in obese mice. In 3T3-L1 adipocytes, irisin enhanced basal lipolysis rather than isoproterenol-induced lipolysis, which were prevented by inhibition of adenylate cyclase or PKA; irisin increased the HSL and perilipin phosphorylation; it increased PKA activity, and cAMP and HSL mRNA levels, but reduced perilipin expression. These results indicate that FNDC5/irisin ameliorates glucose/lipid metabolic derangements and insulin resistance in obese mice, and enhances lipolysis via cAMP-PKA-HSL/perilipin pathway. FNDC5 or irisin can be taken as an effective therapeutic strategy for metabolic disorders.

19.
Biochim Biophys Acta ; 1852(9): 1709-18, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26001930

RESUMEN

Vascular smooth muscle cell (VSMC) proliferation and vascular fibrosis are closely linked with hypertension and atherosclerosis. Salusin-ß is a bioactive peptide involved in the pathogenesis of atherosclerosis. However, it is still largely undefined whether salusin-ß is a potential candidate in the VSMC proliferation and vascular fibrosis. Experiments were carried out in human vascular smooth muscle cells (VSMCs) and in rats with intravenous injection of lentivirus expressing salusin-ß. In vitro, salusin-ß promoted VSMCs proliferation, which was attenuated by adenylate cyclase inhibitor SQ22536, PKA inhibitor Rp-cAMP, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, ERK inhibitor U0126 or cAMP response element binding protein (CREB) inhibitor KG501. It promoted the phosphorylation of ERK1/2, CREB and EGFR, which were abolished by SQ22536 or Rp-cAMP. Furthermore, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 diminished the salusin-ß-evoked ERK1/2 and CREB phosphorylation. On the other hand, salusin-ß increased collagen-I, collagen-III, fibronectin and connective tissue growth factor (CTGF) mRNA and phosphorylation of Smad2/3, which were prevented by ALK5 inhibitor A83-01. In vivo, salusin-ß overexpression increased the media thickness, media/lumen ratio coupled with ERK1/2, CREB, EGFR and Smad2/3 phosphorylation, as well as the mRNA of collagen-I, collagen-III, fibronectin, transforming growth factor-ß1 (TGF-ß1) and CTGF in arteries. Moreover, salusin-ß overexpression in rats caused severe hypertension. Intravenous injection of salusin-ß dose-relatedly increased blood pressure, but excessive salusin-ß decreased blood pressure and heart rate. These results indicate that salusin-ß promotes VSMC proliferation via cAMP-PKA-EGFR-CREB/ERK pathway and vascular fibrosis via TGF-ß1-Smad pathway. Increased salusin-ß contributes to vascular remodeling and hypertension.

20.
BMC Cancer ; 15: 80, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25886574

RESUMEN

BACKGROUND: von Willebrand factor (vWF) is a potent regulator of angiogenesis, tumor growth, and metastasis. Yet, the expression pattern of vWF in human gastric cancer (GC) tissues and its relation to clinicopathological features of these cases remains unknown. METHODS: Tumor and 5-cm adjacent non-tumoral parenchyma specimens were collected from 99 patients with GC (early stages I/II and late stages III/IV), and normal specimens were collected from 32 healthy controls (reference group). Plasma vWF antigen (vWF:Ag) and vWF activity were assessed by ELISA. The role of vascular endothelial growth factor (VEGF) in differential vWF expression was investigated using cultured human umbilical vein endothelial cells (HUVECs). vWF and VEGF protein and mRNA expression levels were investigated by qRT-PCR, western blotting and immunohistochemistry (IHC) respectively. The correlation of IHC-detected vWF expression with patient clinicopathological characteristics was analyzed. RESULTS: Compared to the reference group, the patients with late GC showed significantly higher levels of vWF:Ag (72% (21-115) vs. 101% (40-136)) and vWF activity (62% (20-112) vs. 117% (33-169)) (both P < 0.001). The GC tumor tissues also showed higher vWF mRNA and protein levels than the adjacent non-tumoral parenchyma. Patients at late GC stage had significantly higher median number of vWF-positive cells than patients at early GC stage (P < 0.05). VEGF induced vWF mRNA and protein expression in HUVECs in dose- and time-dependent manners. Patients with late GC stage also had significantly higher serum VEGF than patients at early GC stage (23 ± 26 vs. 10 ± 12 pg/mL, P < 0.01). Most of the undifferentiated GC tumor tissues at late disease stage exhibited strong VEGF and VEGFR2 protein staining, which co-localized with the vWF protein staining pattern. CONCLUSIONS: GC-related plasma vWF:Ag and vWF activity levels become substantially elevated in the late stage of disease. The higher mRNA and protein expression of vWF in GC tumor stroma may be regulated by the VEGF-VEGFR2 signaling pathway in vitro and may contribute to GC progression in vivo.


Asunto(s)
Neoplasias Gástricas/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Gatos , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA