Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 231, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637880

RESUMEN

BACKGROUND: Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS: We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS: Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS: This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.


Asunto(s)
MicroARNs , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Apoptosis , Estrés del Retículo Endoplásmico , MicroARNs/metabolismo
2.
Mol Biol Rep ; 51(1): 607, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704801

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a critical neurological condition with few treatment options, where secondary immune responses and specific cell death forms, like pyroptosis, worsen brain damage. Pyroptosis involves gasdermin-mediated membrane pores, increasing inflammation and neural harm, with the NLRP3/Caspase-1/GSDMD pathway being central to this process. Peroxiredoxin II (Prx II), recognized for its mitochondrial protection and reactive oxygen species (ROS) scavenging abilities, appears as a promising neuronal pyroptosis modulator. However, its exact role and action mechanisms need clearer definition. This research aims to explore Prx II impact on neuronal pyroptosis and elucidate its mechanisms, especially regarding endoplasmic reticulum (ER) stress and oxidative stress-induced neuronal damage modulation. METHODS AND RESULTS: Utilizing MTT assays, Microscopy, Hoechst/PI staining, Western blotting, and immunofluorescence, we found Prx II effectively reduces LPS/ATP-induced pyroptosis and neuroinflammation in HT22 hippocampal neuronal cells. Our results indicate Prx II's neuroprotective actions are mediated through PI3K/AKT activation and ER stress pathway inhibition, diminishing mitochondrial dysfunction and decreasing neuronal pyroptosis through the ROS/MAPK/NF-κB pathway. These findings highlight Prx II potential therapeutic value in improving intracerebral hemorrhage outcomes by lessening secondary brain injury via critical signaling pathway modulation involved in neuronal pyroptosis. CONCLUSIONS: Our study not only underlines Prx II importance in neuroprotection but also opens new therapeutic intervention avenues in intracerebral hemorrhage, stressing the complex interplay between redox regulation, ER stress, and mitochondrial dynamics in neuroinflammation and cell death management.


Asunto(s)
Estrés del Retículo Endoplásmico , Estrés Oxidativo , Peroxirredoxinas , Piroptosis , Animales , Ratones , Línea Celular , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/complicaciones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxirredoxinas/metabolismo , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
3.
BMC Anesthesiol ; 24(1): 2, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166724

RESUMEN

BACKGROUND: Ciprofol is a novel intravenous sedative and anesthetic. Studies have shown that it features a rapid onset of action, a fast recovery time, slight inhibition of respiratory and cardiovascular functions, and a low incidence of adverse reactions. This study aims to explore the median effective dose (ED50) and the 95% effective dose (ED95) of ciprofol in inhibiting responses to gastroscope insertion when combined with a low dose of alfentanil, and to evaluate its safety, to provide a reference for the rational use of ciprofol in clinical practices. METHODS: We included 25 patients aged 18-64 years of either sex who underwent gastroscopy under intravenous general anesthesia, with a Body Mass Index (BMI) 18-28 kg/m2, and an American Society of Anesthesiologists (ASA) grade I or II. In this study, the dose-finding strategy of ciprofol followed a modified Dixon's up-and-down method with an initial dose of 0.30 mg/kg and an increment of 0.02 mg/kg. Ciprofol was administered after intravenous injection of 7 µg/kg of alfentanil, and 2 min later a gastroscope was inserted. When the insertion response of one participant was positive (including body movement, coughing, and eye opening), an escalation of 0.02 mg/kg would be given to the next participant; otherwise, a de-escalation of 0.02 mg/kg would be administered. The study was terminated when negative response and positive response alternated 8 times. A Probit model was used to calculate the ED50 and ED95 of ciprofol in inhibiting responses to gastroscope insertion when combined with alfentanil. Patients' recovery time, discharge time, vital signs and occurrence of adverse reactions were recorded. RESULTS: The ED50 of single-dose intravenous ciprofol injection with 7 µg/kg of alfentanil in inhibiting gastroscope insertion responses was 0.217 mg/kg, and the ED95 was 0.247 mg/kg. Patients' recovery time and discharge time were 11.04 ± 1.49 min and 9.64 ± 2.38 min, respectively. The overall incidence of adverse reactions was 12%. CONCLUSION: The ED50 of ciprofol combined with 7 µg/kg of alfentanil in inhibiting gastroscope insertion responses was 0.217 mg/kg, and the ED95 was 0.247 mg/kg. Ciprofol showed a low incidence of anesthesia-related adverse events. TRIAL REGISTRATION: http://www.chictr.org.cn (ChiCTR2200061727).


Asunto(s)
Alfentanilo , Propofol , Humanos , Gastroscopios , Estudios Prospectivos , Hipnóticos y Sedantes , Anestesia Intravenosa
4.
Biochem Biophys Res Commun ; 672: 36-44, 2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37336123

RESUMEN

Lipid droplets are unique lipid storage organelles in hepatocytes. Lipophagy is a key mechanism of selective degradation of lipid droplets through lysosomes. It plays a crucial role in the prevention of metabolic liver disease, including nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), and is a potential therapeutic target for treating these dysfunctions. In this review, we highlighted recent research and discussed advances in key proteins and molecular mechanisms related to lipophagy in liver disease. Reactive oxygen species (ROS) is an inevitable product of metabolism in alcohol-treated or high-fat-treated cells. Under this light, the potential role of ROS in autophagy in lipid droplet removal was initially explored to provide insights into the link between oxidative stress and metabolic liver disease. Subsequently, the current measures and drugs that treat NAFLD and AFLD through lipophagy regulation were summarized. The complexity of molecular mechanisms underlying lipophagy in hepatocytes and the need for further studies for their elucidation, as well as the status and limitations of current therapeutic measures and drugs, were also discussed.


Asunto(s)
Hígado Graso Alcohólico , Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado Graso Alcohólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Autofagia/fisiología , Enfermedades Metabólicas/metabolismo , Gotas Lipídicas/metabolismo
5.
Plant Cell Environ ; 46(8): 2337-2357, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37267089

RESUMEN

Plants contain three NADPH-thioredoxin reductases (NTR) located in the cytosol/mitochondria (NTRA/B) and the plastid (NTRC) with important metabolic functions. However, mutants deficient in all NTRs remained to be investigated. Here, we generated and characterised the triple Arabidopsis ntrabc mutant alongside with ntrc single and ntrab double mutants under different environmental conditions. Both ntrc and ntrabc mutants showed reduced growth and substantial metabolic alterations, especially in sink leaves and under high CO2 (HC), as compared to the wild type. However, ntrabc showed higher effective quantum yield of PSII under both constant and fluctuating light conditions, altered redox states of NADH/NAD+ and glutathione (GSH/GSSG) and lower potential quantum yield of PSII in sink leaves in ambient but not high CO2 concentrations, as compared to ntrc, suggesting a functional interaction between chloroplastic and extra-chloroplastic NTRs in photosynthesis regulation depending on leaf development and environmental conditions. Our results unveil a previously unknown role of the NTR system in regulating sink leaf metabolism and plant acclimation to HC, while it is not affecting full plant development, indicating that the lack of the NTR system can be compensated, at least to some extent, by other redox mechanisms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADP/metabolismo , Dióxido de Carbono/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Arabidopsis/metabolismo , Fotosíntesis/fisiología , Cloroplastos/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Tiorredoxinas/metabolismo , Aclimatación
6.
Cell Commun Signal ; 21(1): 227, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667281

RESUMEN

Metastatic cancer cells can develop anoikis resistance in the absence of substrate attachment and survive to fight tumors. Anoikis is mediated by endogenous mitochondria-dependent and exogenous death receptor pathways, and studies have shown that caspase-8-dependent external pathways appear to be more important than the activity of the intrinsic pathways. This paper reviews the regulation of anoikis by external pathways mediated by death receptors. Different death receptors bind to different ligands to activate downstream caspases. The possible mechanisms of Fas-associated death domain (FADD) recruitment by Fas and TNF receptor 1 associated-death domain (TRADD) recruitment by tumor necrosis factor receptor 1 (TNFR1), and DR4- and DR5-associated FADD to induce downstream caspase activation and regulate anoikis were reviewed. This review highlights the possible mechanism of the death receptor pathway mediation of anoikis and provides new insights and research directions for studying tumor metastasis mechanisms. Video Abstract.


Asunto(s)
Anoicis , Caspasas , Proteolisis , Mitocondrias , Procesamiento Proteico-Postraduccional
7.
Cell Commun Signal ; 21(1): 296, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864270

RESUMEN

BACKGROUND: Exosomes are small extracellular vesicles that play important roles in intercellular communication and have potential therapeutic applications in regenerative medicine. Dermal mesenchymal stem cells (DMSCs) are a promising source of exosomes due to their regenerative and immunomodulatory properties. However, the molecular mechanisms regulating exosome secretion from DMSCs are not fully understood. RESULTS: In this study, the role of peroxiredoxin II (Prx II) in regulating exosome secretion from DMSCs and the underlying molecular mechanisms were investigated. It was discovered that depletion of Prx II led to a significant reduction in exosome secretion from DMSCs and an increase in the number of intracellular multivesicular bodies (MVBs), which serve as precursors of exosomes. Mechanistically, Prx II regulates the ISGylation switch that controls MVB degradation and impairs exosome secretion. Specifically, Prx II depletion decreased JNK activity, reduced the expression of the transcription inhibitor Foxo1, and promoted miR-221 expression. Increased miR-221 expression inhibited the STAT signaling pathway, thus downregulating the expression of ISGylation-related genes involved in MVB degradation. Together, these results identify Prx II as a critical regulator of exosome secretion from DMSCs through the ISGylation signaling pathway. CONCLUSIONS: Our findings provide important insights into the molecular mechanisms regulating exosome secretion from DMSCs and highlight the critical role of Prx II in controlling the ISGylation switch that regulates DMSC-exosome secretion. This study has significant implications for developing new therapeutic strategies in regenerative medicine. Video Abstract.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Exosomas/metabolismo , Peroxirredoxinas/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo
8.
Inflamm Res ; 72(9): 1839-1859, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37725102

RESUMEN

BACKGROUND: Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD: The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS: The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION: Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Piroptosis , Enfermedades Neuroinflamatorias , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neuronas
9.
J Med Primatol ; 52(4): 259-271, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277966

RESUMEN

BACKGROUND: Simian immunodeficiency virus (SIV) infection in rhesus macaques (Macaca mulatta) can lead to the development of SIV encephalitis (SIVE), which is closely related to human immunodeficiency virus (HIV)-induced dementia. METHODS: This was done by analyzing SIV and SIVE encephalitis in infected M. mulatta hippocampus samples from two microarray data sets, identifying two groups of common differentially expressed genes and predicting associated protein interactions. RESULTS: We found that eight genes-MX1, B2M, IFIT1, TYMP, STAT1, IFI44, ISG15, and IFI27-affected the negative regulation of biological processes, hepatitis C and Epstein-Barr viral infection, and the toll-like receptor signaling pathway, which mediate the development of encephalitis after SIV infection. In particular, STAT1 played a central role in the process by regulating biopathological changes during the development of SIVE. CONCLUSION: These findings provide a new theoretical basis for the treatment of encephalopathy after HIV infection by targeting STAT1.


Asunto(s)
Encefalitis , Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Humanos , Animales , Virus de la Inmunodeficiencia de los Simios/genética , Macaca mulatta , Carga Viral
10.
Cell Mol Biol Lett ; 28(1): 48, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268886

RESUMEN

BACKGROUND: Pulmonary fibrosis is a major category of end-stage changes in lung diseases, characterized by lung epithelial cell damage, proliferation of fibroblasts, and accumulation of extracellular matrix. Peroxiredoxin 1 (PRDX1), a member of the peroxiredoxin protein family, participates in the regulation of the levels of reactive oxygen species in cells and various other physiological activities, as well as the occurrence and development of diseases by functioning as a chaperonin. METHODS: Experimental methods including MTT assay, morphological observation of fibrosis, wound healing assay, fluorescence microscopy, flow cytometry, ELISA, western blot, transcriptome sequencing, and histopathological analysis were used in this study. RESULTS: PRDX1 knockdown increased ROS levels in lung epithelial cells and promoted epithelial-mesenchymal transition (EMT) through the PI3K/Akt and JNK/Smad signalling pathways. PRDX1 knockout significantly increased TGF-ß secretion, ROS production, and cell migration in primary lung fibroblasts. PRDX1 deficiency also increased cell proliferation, cell cycle circulation, and fibrosis progression through the PI3K/Akt and JNK/Smad signalling pathways. BLM treatment induced more severe pulmonary fibrosis in PRDX1-knockout mice, mainly through the PI3K/Akt and JNK/Smad signalling pathways. CONCLUSIONS: Our findings strongly suggest that PRDX1 is a key molecule in BLM-induced lung fibrosis progression and acts through modulating EMT and lung fibroblast proliferation; therefore, it may be a therapeutic target for the treatment of BLM-induced lung fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Bleomicina/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Pulmón/metabolismo , Proliferación Celular , Fibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/efectos adversos , Peroxirredoxinas/metabolismo
11.
BMC Anesthesiol ; 23(1): 208, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322424

RESUMEN

BACKGROUND: The Bispectral Index (BIS) and the Patient State Index (PSI) are commonly used measures to assess intraoperative sedation depth. However, model differences lead to different results, which in turn interferes with clinicians' judgment on the depth of anesthesia. Remimazolam tosilate (RT) for injection is a new benzodiazepine used in sedation. In its clinical application, there are few effective indicators for sedation depth monitoring. To close this gap, this study aims to compare BIS and PSI in measuring the sensitivity and specificity of intraoperative RT and to explore the safety of RT for intraspinal anesthesia in elderly patients. METHODS: This study included 40 patients undergoing elective electro-prostatectomy with intraspinal anesthesia, who were monitored by BIS and PSI simultaneously during operation. Remimazolam tosylate 0.1 mg/kg was intravenously administered after the intraspinal anesthesia when patients were in a completely painless status. Then BIS, PSI, the Modified Observer's Assessment of Alertness and Sedation (MOAA/S) scores and vital signs were observed and recorded per minute for 10 min. Pearson's correlation analysis and linear regression model were used to compare BIS and PSI sedation scores, and to test their associations with the MOAA/S score, respectively. ROC curves were drawn to compare the sensitivity and specificity of BIS and PSI. Changes of vital signs were presented as mean ± standard deviation. Perioperative liver and kidney function indicators were analyzed using a paired t-test to evaluate the safety of RT for intraspinal anesthesia in the elderly patients. RESULTS: According to Pearson's correlation analysis, a significant (P < 0.01) correlation between BIS and PSI was found when used to monitor intraoperative sedation of RT (r = 0.796). Significant associations between BIS and MOAA/S (r = 0.568, P < 0.01), and between PSI and MOAA/S (r = 0.390, P < 0.01) were also found. The areas under the ROC curves of BIS and PSI were 0.801 ± 0.022 and 0.734 ± 0.026, respectively, suggesting that both measures may predict patients' state of consciousness and BIS was more accurate than PSI. Vital signs remained stable throughout the study. No abnormal changes of clinical significance were found based on laboratory test results of liver and kidney function. CONCLUSION: BIS and PSI are strongly associated for monitoring the sedation of RT intraoperatively. Both methods can accurately reflect sedation depth. According to correlation analyses with MOAA/S scale and ROC curves, BIS is more accurate than PSI during such intraoperative monitoring. In addition, RT can be safely used in elderly patients under intraspinal anesthesia for supportive sedation, with stable vital signs and sound kidney and liver safety profiles. TRIAL REGISTRATION: http://www.chictr.org.cn (ChiCTR2100051912).


Asunto(s)
Anestesia , Propofol , Masculino , Humanos , Anciano , Benzodiazepinas , Monitoreo Intraoperatorio , Electroencefalografía , Hipnóticos y Sedantes
12.
Neurosurg Rev ; 46(1): 187, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37507483

RESUMEN

Hypoxia has been shown to contribute to tumor immunosuppressive microenvironment and is an effective prognostic indicator. This study aimed to screen prognostic hypoxia-related genes (HRGs) in glioblastoma and investigate the association between HRGs and tumor immunosuppressive microenvironment. The glioblastoma-related mRNA data were collected from TCGA, GEO, and CGGA databases. Totally 200 HRGs were obtained from the GSEA website. The prognostic HRGs were screened by univariate Cox regression analysis. Somatic mutation data of glioblastoma from TCGA was visualized using the "maftools" of R package. Immune cell infiltration proportions were calculated by CIBERSORT. The TISIDB online tool was applied to analyze the relationship between HRGs and immunoinhibitors as well as the HRG expression in different glioblastoma immune and molecular subtypes. Hub gene's mRNA and protein levels in cell lines were determined by qRT-PCR and western blot, respectively. The effects of hub gene knockdown on cell viability and migration ability were evaluated employing CCK8 and wound healing assays. The univariate Cox regression showed that high level of FBP1 (fructose-1,6-bisphosphatase 1) was a poor prognostic biomarker, and FBP1 was mainly expressed in lymphocyte depleted immune subtype of glioblastoma. High FBP1 mRNA and protein levels have been successfully validated in vitro. The somatic mutation analysis suggested that TP53 mutation rate was the highest in the high FBP1 glioblastoma group, while EGFR mutation rate was the highest in the low FBP1 glioblastoma group. In the high FBP1 group, the infiltration proportions and types of immune cells were less, dominated by macrophages M2, and the expression of CTLA4, LAG3, TIGIT, PDL1, and PDL2 was significantly upregulated. The expression of FBP1 was positively correlated with several immunoinhibitors, such as IL-10 and TGFß-1. In conclusion, we demonstrated that FBP1 could serve as a prognostic biomarker for glioblastoma. The immune microenvironment in the high FBP1 group might be suppressed by up-regulating immune checkpoints and immunoinhibitors.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Pronóstico , Supervivencia Celular , Bases de Datos Factuales , Hipoxia , Microambiente Tumoral
13.
Int J Neurosci ; : 1-4, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36994695

RESUMEN

INTRODUCTION: Chronic subdural hematoma (CSDH) often occurs 3 weeks to 3 months after brain injury, which is mainly caused by bleeding of the bridging vein. For patients with ventriculoperitoneal (V-P) shunt, excessive drainage can also cause CSDH. We present a rare case of CSDH caused by shunt valve breakdown in brain injury. CASE REPORT: We report a 68-year-old man with V-P shunt for 8 years. He presented with bilateral CSDH with disappearance of lateral ventricles nearly 1 month after a brain injury caused by being hit with a stick. After burr hole drainage (BHD), the patient's symptoms improved and lateral ventricles reappeared, but disappeared rapidly with CSDH recurrence within a short time. We considered the cause to be medium pressure shunt valve breakdown caused by hitting with a stick, which was confirmed by the engineer's test after the operation and excessive drainage of cerebrospinal fluid. BHD replaced the adjustable pressure shunt valve, and the patient recovered. CONCLUSION: V-P shunt is a common operation in neurosurgery, and postoperative shunt valve breakdown may lead to poor outcome. We report a rare case of CSDH caused by shunt valve breakdown due to excessive external forces, suggesting that patients after V-P shunt should pay attention to the protection of the shunt valve.

14.
Br J Neurosurg ; 37(6): 1721-1724, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33605812

RESUMEN

Acute subdural hematoma (SDH) is a rare occurrence in chronic myeloid leukemia (CML) patients with only two cases reported in literature. However, sudden severe acute SDH caused by CML has not been reported on. Our patient was admitted for 'sudden unconsciousness for more than 1 hour'. Computed tomography (CT) angiography revealed a large amount of acute SDH on the left side. Physical exam showed the patient's left pupil was dilated and signs of cerebral herniation were present. The preoperative coagulation profile was normal. Emergency craniotomy for hematoma clearance and decompression was performed. During the surgery, a ruptured cerebral artery was located in the perisylvian region and hemostasis was achieved through electrocautery. Pre-operative white blood count was 58,100 cell/µl, with post-operative bone marrow examination、cytogenetic analysis and RT-PCR detection revealing a diagnosis of CML, for which hydroxyurea chemotherapy was initiated. Leukocyte count of the patient gradually returned to normal. After 24 days, the patient regained consciousness and on day 30, repeat CT scan showed no SDH recurrence. The patient recovered with no neurological deficits and achieved a good prognosis.


Asunto(s)
Hematoma Subdural Agudo , Hematoma Subdural Crónico , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Hematoma Subdural Agudo/cirugía , Arterias , Leucemia Mielógena Crónica BCR-ABL Positiva/complicaciones , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/cirugía , Tomografía Computarizada por Rayos X/efectos adversos , Angiografía por Tomografía Computarizada , Hematoma Subdural Crónico/diagnóstico por imagen , Hematoma Subdural Crónico/etiología
15.
BMC Anesthesiol ; 22(1): 247, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927618

RESUMEN

BACKGROUND: Remimazolam tosilate (RT) is a newly listed benzodiazepine for sedation and anesthesia featuring quick onset of effects, short maintenance and recovery times, which is currently under research. This trial was conducted to determine the median effective dose (ED50) and the 95% effective dose (ED95) of single-dose remimazolam for moderate sedation in elderly patients undergoing transurethral resection of the prostate (TURP) under spinal anesthesia, and to evaluate its efficacy and safety. METHODS: Thirty male patients aged 65-80 years old were recruited for selective TURP. Remimazolam was administered intravenously to pain-free patients (VAS score < 1) within 1 min of successful spinal anesthesia by the same anesthesiologist. We used modified Dixon's up-and-down sequential allocation method to determine the ED50 and ED95 of the agent with an initial dosage of 0.1 mg/kg. Successful sedation was defined as an MOAA/S score ≤ 3 and above 1. A score of > 3 was deemed as failed sedation. Recruitment continued until ten independent pairs (from successful sedation to failed sedation) would give a reliable estimation of the ED50 and ED95 of RT and their 95% confidence intervals. RESULTS: The ED50 of remimazolam was 0.063 (95% C.I. 0.045-0.073) mg/kg. Its ED95 was 0.079 (95% C.I. 0.07-0.137) mg/kg. Remimazolam was safe in its application. CONCLUSIONS: A single-dose of RT proves to be safe for assisted sedation during TURP in elderly male patients under spinal anesthesia with a lower incidence of adverse events. Its ED50 and ED95 were 0.063 mg/kg and 0.079 mg/kg, respectively. TRIAL REGISTRATION: http://www.chictr.org.cn (ChiCTR2100051912).


Asunto(s)
Anestesia Raquidea , Resección Transuretral de la Próstata , Anciano , Anciano de 80 o más Años , Benzodiazepinas , Sedación Consciente/métodos , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Humanos , Hipnóticos y Sedantes , Masculino , Estudios Prospectivos
16.
Biochem Biophys Res Commun ; 543: 72-79, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33517129

RESUMEN

Ischemic stroke is a common disease worldwide with high mortality and disability rates. Nevertheless, pathogenesis of ischemic stroke is still vague, and finding novel therapeutic target is urgently necessary. TMEM59 (also known as dendritic cell-derived factor 1, DCF1), a type I transmembrane protein, contains a minimal 19-amino-acid peptide in its intracellular domain, and has been involved in neurological pathology. However, its biological impacts on ischemic stroke are still unknown. In this study, we provided new evidence that TMEM59 expression was significantly down-regulated upon ischemia/reperfusion (I/R). The effect of stroke insult on TMEM59 expression change was only detected in microglial cells by in vitro studies. We observed that TMEM59 knockout markedly accelerated cerebral I/R in mice induced by middle cerebral artery occlusion (MCAO), as evidenced by the elevated infarction volume, neurological deficit scores, brain water contents and neuronal death, further contributing to the abnormal behaviors for mice. We then found that microglial activation reflected by the enhanced expression of Iba-1 was dramatically potentiated by TMEM59 knockout in MCAO-treated mice. Pyroptosis was highly triggered in mice with cerebral I/R, while being further aggravated in mice with TMEM59 deletion, as proved by the considerably increased expression of NLRP3, ASC, cleaved Caspase-1, GSDMD-N, mature-IL-1ß and mature-IL-18. Additionally, TMEM59 knockout mice exhibited accelerated activation of NF-κB signaling pathway compared with the wild type group of mice after MCAO operation, indicating the anabatic neuroinflammation. The effects of TMEM59 suppression on ischemic stroke were confirmed in microglial cells with exposure to oxygen-glucose deprivation/reoxygenation (OGD/R). In contrast, the in vitro studies verified that improving TMEM59 expression effectively hindered pyroptosis and inflammation in microglial cells upon OGD/R treatment. Taken together, these findings illustrated protective effects of TMEM59 against ischemic stroke through restraining pyroptosis and inflammatory response.


Asunto(s)
Isquemia Encefálica/prevención & control , Accidente Cerebrovascular Isquémico/prevención & control , Proteínas de la Membrana/metabolismo , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Células Cultivadas , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Piroptosis
17.
Sensors (Basel) ; 21(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064934

RESUMEN

Lamb wave-based damage imaging is a promising technique for aircraft structural health monitoring, as enhancing the resolution of damage detection is a persistent challenge. In this paper, a damage imaging technique based on the Time Reversal-MUltiple SIgnal Classification (TR-MUSIC) algorithm is developed to detect damage in plate-type structures. In the TR-MUSIC algorithm, a transfer matrix is first established by exciting and sensing signals. A TR operator is constructed for eigenvalue decomposition to divide the data space into signal and noise subspaces. The structural space spectrum of the algorithm is calculated based on the orthogonality of the two subspaces. A local TR-MUSIC algorithm is proposed to enhance the image quality of multiple damages by using a moving time window to establish the local space spectrum at different times or different distances. The multidamage detection capability of the proposed enhanced TR-MUSIC algorithm is verified by simulations and experiments. The results reveal that the local TR-MUSIC algorithm can not only effectively detect multiple damages in plate-type structures with good image quality but also has a superresolution ability for detecting damage with distances smaller than half the wavelength.

18.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917624

RESUMEN

Hole-edge crack quantification of bolt joints is critical for monitoring and estimating structural integrity of aircraft. The paper proposes a new triangle eddy current sensor array for the purpose of increasing the level of quantifying hole-edge crack parameters, especially, the crack angle. The new senor array consists of triangular coils instead of planar rectangular coils. The configuration of the novel sensor array, including the excitation current directions and the excitation winding shape, is optimized by simulation. The ability of the proposed sensing film to identify the crack parameters has been verified by finite element simulations and experiments. Results shows that triangular coils with same current directions in circumferentially adjacent coils and opposite current directions in axially adjacent coils achieve better performance in sensor linearity and resolution compared to rectangular coils. In addition, it has also been proved that the sensing film has a good potential to identify the crack depth and length.

19.
Biochem Biophys Res Commun ; 529(3): 635-641, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32736685

RESUMEN

Keratinocyte hyperproliferation is an essential link in skin cancer pathogenesis. Peroxiredoxin I (Prx I) is known to regulate cancer cell proliferation, differentiation, and apoptosis, but its role in skin cancer remains unclear. This study aimed to elucidate the role and mechanism of Prx I in skin cancer pathogenesis. Dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) were used to create a skin tumor model of the initiation/promotion stage of cancer. The role of Prx I in H2O2-induced keratinocyte apoptosis was also investigated. After DMBA/TPA treatment, Prx I deficiency was significantly associated with less skin tumors, lower Bcl-2 expression, and higher p-p38 and cleaved caspase-3 expressions in Prx I knockout tumors than in wild-type controls. H2O2 stimulation caused more cellular apoptosis in Prx I knockdown HaCaT cells than in normal HaCaT cells. The signaling study revealed that Bcl-2, p-p38, and cleaved caspase-3 expressions were consistent with the results in the tumors. In conclusion, the deletion of Prx I triggered the DMBA/TPA-induced skin tumor formation in vivo and in vitro by regulating the reactive oxygen species (ROS)-p38 mitogen-activated protein kinase (MAPK) pathway. These findings provide a theoretical basis for treating skin cancer.


Asunto(s)
Apoptosis/genética , Queratinocitos/metabolismo , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Células HEK293 , Humanos , Peróxido de Hidrógeno/farmacología , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Ratones de la Cepa 129 , Ratones Noqueados , Oxidantes/farmacología , Peroxirredoxinas/deficiencia , Interferencia de ARN , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
20.
Sensors (Basel) ; 20(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266034

RESUMEN

Bolted joints are the primary structures for the load transfer of large-scale structures. It is vital to monitor the process of bolt cracking for enduring structural safety. In this paper, a structural health monitoring technique based on the embedding eddy current sensing film has been proposed to quantify the crack parameters of bolt cracking. Two configurations of the sensing film containing one-dimensional circumferential coil array and two-dimensional coil array are designed and verified to have the ability to identify three crack parameters: the crack angle, the crack depth, and the crack location in the axial direction of the bolt. The finite element method has been employed not only to verify the capacity of the sensing film, but also to investigate the interaction between the crack and the eddy current/magnetic field. It has been demonstrated that as the crack propagates, the variations of the induced voltage of the sensing coils are influenced by both eddy current effect and magnetic flux leakage, which play different roles in the different periods of the crack propagation. Experiments have been performed to verify the effectiveness and feasibility of the sensing film to quantify three crack parameters in the process of the bolt cracking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA