Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 34(10): 3702-3717, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758611

RESUMEN

High temperatures interfere with meiotic recombination and the subsequent progression of meiosis in plants, but few genes involved in meiotic thermotolerance have been characterized. Here, we characterize a maize (Zea mays) classic dominant male-sterile mutant Ms42, which has defects in pairing and synapsis of homologous chromosomes and DNA double-strand break (DSB) repair. Ms42 encodes a member of the heat shock protein family, HSP101, which accumulates in pollen mother cells. Analysis of the dominant Ms42 mutant and hsp101 null mutants reveals that HSP101 functions in RADIATION SENSITIVE 51 loading, DSB repair, and subsequent meiosis. Consistent with these functions, overexpression of Hsp101 in anthers results in robust microspores with enhanced heat tolerance. These results demonstrate that HSP101 mediates thermotolerance during microsporogenesis, shedding light on the genetic basis underlying the adaptation of male meiocytes to high temperatures.


Asunto(s)
Termotolerancia , Zea mays , Emparejamiento Cromosómico , ADN/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Meiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Termotolerancia/genética , Zea mays/genética , Zea mays/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(2): E334-E341, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279404

RESUMEN

From its tropical origin in southwestern Mexico, maize spread over a wide latitudinal cline in the Americas. This feat defies the rule that crops are inhibited from spreading easily across latitudes. How the widespread latitudinal adaptation of maize was accomplished is largely unknown. Through positional cloning and association mapping, we resolved a flowering-time quantitative trait locus to a Harbinger-like transposable element positioned 57 kb upstream of a CCT transcription factor (ZmCCT9). The Harbinger-like element acts in cis to repress ZmCCT9 expression to promote flowering under long days. Knockout of ZmCCT9 by CRISPR/Cas9 causes early flowering under long days. ZmCCT9 is diurnally regulated and negatively regulates the expression of the florigen ZCN8, thereby resulting in late flowering under long days. Population genetics analyses revealed that the Harbinger-like transposon insertion at ZmCCT9 and the CACTA-like transposon insertion at another CCT paralog, ZmCCT10, arose sequentially following domestication and were targeted by selection for maize adaptation to higher latitudes. Our findings help explain how the dynamic maize genome with abundant transposon activity enabled maize to adapt over 90° of latitude during the pre-Columbian era.


Asunto(s)
Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/fisiología , Clonación Molecular , Flores/genética , Flores/fisiología , Eliminación de Gen , Genoma de Planta , Proteínas de Plantas/genética
3.
New Phytol ; 228(4): 1386-1400, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32579713

RESUMEN

The floral transition of the maize (Zea mays ssp. mays) shoot apical meristem determines leaf number and flowering time, which are key traits influencing local adaptation and yield potential. dlf1 (delayed flowering1) encodes a basic leucine zipper protein that interacts with the florigen ZCN8 to mediate floral induction in the shoot apex. However, the mechanism of how dlf1 promotes floral transition remains largely unknown. We demonstrate that dlf1 underlies qLB7-1, a quantitative trait locus controlling leaf number and flowering time that was identified in a BC2 S3 population derived from a cross between maize and its wild ancestor, teosinte (Zea mays ssp. parviglumis). Transcriptome sequencing and chromatin immunoprecipitation sequencing demonstrated that DLF1 binds the core promoter of two AP1/FUL subfamily MADS-box genes, ZmMADS4 and ZmMADS67, to activate their expression. Knocking out ZmMADS4 and ZmMADS67 both increased leaf number and delayed flowering, indicating that they promote the floral transition. Nucleotide diversity analysis revealed that dlf1 and ZmMADS67 were targeted by selection, suggesting that they may have played important roles in maize flowering time adaptation. We show that dlf1 promotes maize floral transition by directly activating ZmMADS4 and ZmMADS67 in the shoot apex, providing novel insights into the mechanism of maize floral transition.


Asunto(s)
Flores , Zea mays , Florigena/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
4.
Plant Physiol ; 173(1): 307-325, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049856

RESUMEN

Anther cuticle and pollen exine are protective barriers for pollen development and fertilization. Despite that several regulators have been identified for anther cuticle and pollen exine development in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), few genes have been characterized in maize (Zea mays) and the underlying regulatory mechanism remains elusive. Here, we report a novel male-sterile mutant in maize, irregular pollen exine1 (ipe1), which exhibited a glossy outer anther surface, abnormal Ubisch bodies, and defective pollen exine. Using map-based cloning, the IPE1 gene was isolated as a putative glucose-methanol-choline oxidoreductase targeted to the endoplasmic reticulum. Transcripts of IPE1 were preferentially accumulated in the tapetum during the tetrad and early uninucleate microspore stage. A biochemical assay indicated that ipe1 anthers had altered constituents of wax and a significant reduction of cutin monomers and fatty acids. RNA sequencing data revealed that genes implicated in wax and flavonoid metabolism, fatty acid synthesis, and elongation were differentially expressed in ipe1 mutant anthers. In addition, the analysis of transfer DNA insertional lines of the orthologous gene in Arabidopsis suggested that IPE1 and their orthologs have a partially conserved function in male organ development. Our results showed that IPE1 participates in the putative oxidative pathway of C16/C18 ω-hydroxy fatty acids and controls anther cuticle and pollen exine development together with MALE STERILITY26 and MALE STERILITY45 in maize.


Asunto(s)
Epidermis de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Arabidopsis/genética , Clonación Molecular , Secuencia Conservada/genética , ADN Bacteriano , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Mutagénesis Insercional/genética , Mutación/genética , Fenotipo , Polen/ultraestructura , Homología de Secuencia de Ácido Nucleico , Fracciones Subcelulares/metabolismo , Ceras/metabolismo , Zea mays/genética , Zea mays/ultraestructura
5.
Biosens Bioelectron ; 251: 116080, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324972

RESUMEN

Highly sensitive ratiometric biosensors have attracted much attention in biomarker detection, but most rely on single-mode signals, which can affect accuracy. The development of new principles and methods for dual-mode ratiometric sensing can enhance detection accuracy. Herein, the zinc(II) meso-tetra(4-carboxyphenyl) porphyrin/MXene (ZnTCPP/Ti3C2Tx) hybrids with phosphate-induced stimuli-responsive behavior are used to develop a novel dual-mode fluorescent/electrochemiluminescent (FL/ECL) ratiometric biosensor. The composites exhibit FL quenching and enhanced ECL behavior involving dissolved O2. The FL quenching of ZnTCPP/Ti3C2Tx is caused by energy transfer (EnT) and photo-induced electron transfer (PET) from ZnTCPP to Ti3C2Tx. While the introduction of MXene compensates for the inadequate conductivity of ZnTCPP, facilitating electron transfer, which further makes the surface ZnTCPP more capable of activating O2 to produce singlet oxygen (1O2), thereby generating enhanced cathodic ECL. Furthermore, phosphate ions (PO43-) can interact with the Ti sites of ZnTCPP/Ti3C2Tx, leading to competition for coordination with ZnTCPP, which in turn detaches ZnTCPP, resulting in enhanced FL and reduced ECL. On the basis of the phosphate-induced stimuli-responsive behavior, the dual-mode FL/ECL ratiometric biosensing of alkaline phosphatase (ALP) is achieved through ALP-catalyzed production of PO43- cascade effect with ZnTCPP/Ti3C2Tx. The linear detection range for ALP is 0.1-50 mU/mL, with a detection limit as low as 0.0083 mU/mL. This proposed ZnTCPP/Ti3C2Tx composites with stimuli-responsive behavior is expected to provide new ideas for the development of high-sensitivity dual-mode ratiometric biosensors with promising applications in the precise detection of important biomarkers.


Asunto(s)
Técnicas Biosensibles , Metaloporfirinas , Nitritos , Fosfatos , Elementos de Transición , Técnicas Biosensibles/métodos , Colorantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA