Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biochem Biophys Res Commun ; 723: 150163, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38820626

RESUMEN

Excitation-contraction coupling in skeletal muscle myofibers depends upon Ca2+ release from the sarcoplasmic reticulum through the ryanodine receptor/Ca2+-release channel RyR1. The RyR1 contains ∼100 Cys thiols of which ∼30 comprise an allosteric network subject to posttranslational modification by S-nitrosylation, S-palmitoylation and S-oxidation. However, the role and function of these modifications is not understood. Although aberrant S-nitrosylation of multiple unidentified sites has been associated with dystrophic diseases, malignant hyperthermia and other myopathic syndromes, S-nitrosylation in physiological situations is reportedly specific to a single (1 of ∼100) Cys in RyR1, Cys3636 in a manner gated by pO2. Using mice expressing a form of RyR1 with a Cys3636→Ala point mutation to prevent S-nitrosylation at this site, we showed that Cys3636 was the principal target of endogenous S-nitrosylation during normal muscle function. The absence of Cys3636 S-nitrosylation suppressed stimulus-evoked Ca2+ release at physiological pO2 (at least in part by altering the regulation of RyR1 by Ca2+/calmodulin), eliminated pO2 coupling, and diminished skeletal myocyte contractility in vitro and measures of muscle strength in vivo. Furthermore, we found that abrogation of Cys3636 S-nitrosylation resulted in a developmental defect reflected in diminished myofiber diameter, altered fiber subtypes, and altered expression of genes implicated in muscle development and atrophy. Thus, our findings establish a physiological role for pO2-coupled S-nitrosylation of RyR1 in skeletal muscle contractility and development and provide foundation for future studies of RyR1 modifications in physiology and disease.


Asunto(s)
Músculo Esquelético , Canal Liberador de Calcio Receptor de Rianodina , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Músculo Esquelético/metabolismo , Ratones , Calcio/metabolismo , Cisteína/metabolismo , Procesamiento Proteico-Postraduccional , Desarrollo de Músculos , Ratones Transgénicos , Señalización del Calcio
2.
Cell ; 133(1): 33-5, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18394987

RESUMEN

Dysregulated S-nitrosylation of proteins characterizes a broad array of human disorders, but its role in disease etiology is not well understood. Two new studies (Durham et al., 2008; Bellinger et al., 2008) now show that hyper-S-nitrosylation of the ryanodine receptor calcium release channel (RyR1) in skeletal muscle disrupts calcium ion flux. This disruption underlies the impaired contractility and cellular damage of skeletal muscle during strenuous exercise and in a spectrum of congenital muscle disorders including malignant hyperthermia.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Animales , Calcio/metabolismo , Golpe de Calor/metabolismo , Humanos , Hipertermia Maligna/metabolismo , Nitrosación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
3.
J Biol Chem ; 289(12): 8612-9, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24509862

RESUMEN

The ryanodine receptor/Ca(2+)-release channels (RyRs) of skeletal and cardiac muscle are essential for Ca(2+) release from the sarcoplasmic reticulum that mediates excitation-contraction coupling. It has been shown that RyR activity is regulated by dynamic post-translational modifications of Cys residues, in particular S-nitrosylation and S-oxidation. Here we show that the predominant form of RyR in skeletal muscle, RyR1, is subject to Cys-directed modification by S-palmitoylation. S-Palmitoylation targets 18 Cys within the N-terminal, cytoplasmic region of RyR1, which are clustered in multiple functional domains including those implicated in the activity-governing protein-protein interactions of RyR1 with the L-type Ca(2+) channel CaV1.1, calmodulin, and the FK506-binding protein FKBP12, as well as in "hot spot" regions containing sites of mutations implicated in malignant hyperthermia and central core disease. Eight of these Cys have been identified previously as subject to physiological S-nitrosylation or S-oxidation. Diminishing S-palmitoylation directly suppresses RyR1 activity as well as stimulus-coupled Ca(2+) release through RyR1. These findings demonstrate functional regulation of RyR1 by a previously unreported post-translational modification and indicate the potential for extensive Cys-based signaling cross-talk. In addition, we identify the sarco/endoplasmic reticular Ca(2+)-ATPase 1A and the α1S subunit of the L-type Ca(2+) channel CaV1.1 as S-palmitoylated proteins, indicating that S-palmitoylation may regulate all principal governors of Ca(2+) flux in skeletal muscle that mediates excitation-contraction coupling.


Asunto(s)
Calcio/metabolismo , Músculo Esquelético/metabolismo , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Ácido Palmítico/química , Conejos , Canal Liberador de Calcio Receptor de Rianodina/química
4.
Proc Natl Acad Sci U S A ; 109(44): 18186-91, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23071315

RESUMEN

Nitric oxide (NO) derived from the activity of neuronal nitric oxide synthase (NOS1) is involved in S-nitrosylation of key sarcoplasmic reticulum (SR) Ca(2+) handling proteins. Deficient S-nitrosylation of the cardiac ryanodine receptor (RyR2) has a variable effect on SR Ca(2+) leak/sparks in isolated myocytes, likely dependent on the underlying physiological state. It remains unknown, however, whether such molecular aberrancies are causally related to arrhythmogenesis in the intact heart. Here we show in the intact heart, reduced NOS1 activity increased Ca(2+)-mediated ventricular arrhythmias only in the setting of elevated myocardial [Ca(2+)](i). These arrhythmias arose from increased spontaneous SR Ca(2+) release, resulting from a combination of decreased RyR2 S-nitrosylation (RyR2-SNO) and increased RyR2 oxidation (RyR-SOx) (i.e., increased reactive oxygen species (ROS) from xanthine oxidoreductase activity) and could be suppressed with xanthine oxidoreductase (XOR) inhibition (i.e., allopurinol) or nitric oxide donors (i.e., S-nitrosoglutathione, GSNO). Surprisingly, we found evidence of NOS1 down-regulation of RyR2 phosphorylation at the Ca(2+)/calmodulin-dependent protein kinase (CaMKII) site (S2814), suggesting molecular cross-talk between nitrosylation and phosphorylation of RyR2. Finally, we show that nitroso-redox imbalance due to decreased NOS1 activity sensitizes RyR2 to a severe arrhythmic phenotype by oxidative stress. Our findings suggest that nitroso-redox imbalance is an important mechanism of ventricular arrhythmias in the intact heart under disease conditions (i.e., elevated [Ca(2+)](i) and oxidative stress), and that therapies restoring nitroso-redox balance in the heart could prevent sudden arrhythmic death.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Compuestos Nitrosos/metabolismo , Animales , Cobayas , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Estrés Oxidativo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(11): 4314-9, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22366318

RESUMEN

Although protein S-nitrosylation is increasingly recognized as mediating nitric oxide (NO) signaling, roles for protein denitrosylation in physiology remain unknown. Here, we show that S-nitrosoglutathione reductase (GSNOR), an enzyme that governs levels of S-nitrosylation by promoting protein denitrosylation, regulates both peripheral vascular tone and ß-adrenergic agonist-stimulated cardiac contractility, previously ascribed exclusively to NO/cGMP. GSNOR-deficient mice exhibited reduced peripheral vascular tone and depressed ß-adrenergic inotropic responses that were associated with impaired ß-agonist-induced denitrosylation of cardiac ryanodine receptor 2 (RyR2), resulting in calcium leak. These results indicate that systemic hemodynamic responses (vascular tone and cardiac contractility), both under basal conditions and after adrenergic activation, are regulated through concerted actions of NO synthase/GSNOR and that aberrant denitrosylation impairs cardiovascular function. Our findings support the notion that dynamic S-nitrosylation/denitrosylation reactions are essential in cardiovascular regulation.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Glutatión Reductasa/metabolismo , Alcohol Deshidrogenasa , Animales , Calcio/metabolismo , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Diástole/efectos de los fármacos , Femenino , Glutatión Reductasa/deficiencia , Hemodinámica/efectos de los fármacos , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica/efectos de los fármacos , Miocardio/citología , Miocardio/enzimología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Óxido Nítrico Sintasa/metabolismo , Nitrosación , Transporte de Proteínas/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Vasodilatación/efectos de los fármacos
6.
J Biol Chem ; 288(32): 22961-71, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798702

RESUMEN

In mammalian skeletal muscle, Ca(2+) release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca(2+)-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca(2+) channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in "hot spot" regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues.


Asunto(s)
Calcio , Peróxido de Hidrógeno , Proteínas Musculares , Músculo Esquelético , Oxígeno , Canal Liberador de Calcio Receptor de Rianodina , Animales , Calcio/química , Calcio/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Estructura Terciaria de Proteína , Conejos , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(38): 16098-103, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21896730

RESUMEN

Physiological sensing of O(2) tension (partial O(2) pressure, pO(2)) plays an important role in some mammalian cellular systems, but striated muscle generally is not considered to be among them. Here we describe a molecular mechanism in skeletal muscle that acutely couples changes in pO(2) to altered calcium release through the ryanodine receptor-Ca(2+)-release channel (RyR1). Reactive oxygen species are generated in proportion to pO(2) by NADPH oxidase 4 (Nox4) in the sarcoplasmic reticulum, and the consequent oxidation of a small set of RyR1 cysteine thiols results in increased RyR1 activity and Ca(2+) release in isolated sarcoplasmic reticulum and in cultured myofibers and enhanced contractility of intact muscle. Thus, Nox4 is an O(2) sensor in skeletal muscle, and O(2)-coupled hydrogen peroxide production by Nox4 governs the redox state of regulatory RyR1 thiols and thereby governs muscle performance. These findings reveal a molecular mechanism for O(2)-based signaling by an NADPH oxidase and demonstrate a physiological role for oxidative modification of RyR1.


Asunto(s)
Músculo Esquelético/metabolismo , NADPH Oxidasas/metabolismo , Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Línea Celular , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Mioblastos/citología , Mioblastos/metabolismo , NADP/farmacología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Oxidación-Reducción , Interferencia de ARN , Conejos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Compuestos de Sulfhidrilo/metabolismo
8.
Clin Rheumatol ; 43(5): 1675-1682, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538907

RESUMEN

OBJECTIVE: This study aimed to evaluate the value of machine learning models (ML) based on MRI radiomics in diagnosing early parotid gland injury in primary Sjögren's syndrome (pSS). METHODS: A total of 164 patients (114 in the training cohort and 50 in the testing cohort) with pSS (n=82) or healthy controls (HC) (n=82) were enrolled. Itksnap software was used to perform two-dimensional segmentation of the bilateral parotid glands on T1-weighted (T1WI) and fat-suppressed T2-weighted imaging (fs-T2WI) images. A total of 1548 texture features of the parotid glands were extracted using radiomics software. A radiomics score (Radscore) was constructed and calculated. A t-test was used to compare the Radscore between the two groups. Finally, five machine learning models were trained and tested to identify early pSS parotid injury, and the performance of the machine learning models was evaluated by calculating the acceptance operating curve (ROC) and other parameters. RESULTS: The Radscores between the pSS and HC groups showed significant statistical differences (p<0.001). Among the five machine learning models, the Extra Trees Classifier (ETC) model performed high predictive efficacy in identifying early pSS parotid injury, with an AUC of 0.87 in the testing set. CONCLUSION: MRI radiomics-based machine learning models can effectively diagnose early parotid gland injury in primary Sjögren's syndrome.


Asunto(s)
Glándula Parótida , Síndrome de Sjögren , Humanos , Glándula Parótida/diagnóstico por imagen , Síndrome de Sjögren/diagnóstico por imagen , Radiómica , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático , Estudios Retrospectivos
9.
J Neurochem ; 108(1): 147-57, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19046328

RESUMEN

Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia coli-expressed glutathione-S-transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein-GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Receptores AMPA/metabolismo , Serina/metabolismo , Secuencia de Aminoácidos , Animales , Aptámeros de Nucleótidos/química , Biotinilación/métodos , Células Cultivadas , Corteza Cerebral , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteína Quinasa C/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptores AMPA/efectos de los fármacos , Transfección
10.
J Cardiovasc Pharmacol ; 54(3): 188-95, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19687749

RESUMEN

Nitric oxide (NO) exerts ubiquitous signaling via posttranslational modification of cysteine residues, a reaction termed S-nitrosylation. Important substrates of S-nitrosylation that influence cardiac function include receptors, enzymes, ion channels, transcription factors, and structural proteins. Cardiac ion channels subserving excitation-contraction coupling are potentially regulated by S-nitrosylation. Specificity is achieved in part by spatial colocalization of ion channels with nitric oxide synthases (NOSs), enzymatic sources of NO in biologic systems, and by coupling of NOS activity to localized calcium/second messenger concentrations. Ion channels regulate cardiac excitability and contractility in millisecond timescales, raising the possibility that NO-related species modulate heart function on a beat-to-beat basis. This review focuses on recent advances in understanding of NO regulation of the cardiac action potential and of the calcium release channel ryanodine receptor, which is crucial for the generation of force. S-Nitrosylation signaling is disrupted in pathological states in which the redox state of the cell is dysregulated, including ischemia, heart failure, and atrial fibrillation.


Asunto(s)
Canales Iónicos/metabolismo , Miocardio/metabolismo , Procesamiento Proteico-Postraduccional , Regulación Alostérica , Animales , Fibrilación Atrial/metabolismo , Acoplamiento Excitación-Contracción , Corazón/fisiología , Corazón/fisiopatología , Insuficiencia Cardíaca/metabolismo , Humanos , Canales Iónicos/química , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Contracción Miocárdica , Óxido Nítrico/metabolismo , Nitrosación , Transducción de Señal
11.
J Neurosci Methods ; 173(2): 208-14, 2008 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-18602949

RESUMEN

In this study we established conditional silencing of integrin-linked kinase (ILK) expression in Sprague-Dawley rat brain by microinjection of rAAV-2-carrying, Tet-On-regulated siRNA expression cassette into nucleus accumbens (NAc) core and induction with doxycycline. We demonstrated that inhibition of ILK expression was effectively induced by administration of doxycycline for 2 weeks while ILK expression was restored after withdrawing doxycycline for 8 days. Increases in GFAP and OX42 expression were observed 5 weeks post virus injection. Importantly, inhibition of ILK expression in the NAc core had no significant effect on cell apoptosis and animal basal locomotion and stereotypical behaviors, but decreased dendritic density of medium spiny neurons. Our studies suggest that: (1) rAAV-delivered Tet-On-regulated siRNA expression can conditionally regulate gene expression in rat brain; (2) inhibition of ILK expression has no significant effect on cell apoptosis and basal locomotor and stereotypical behaviors, but decreases dendritic density; and (3) microinjection of rAAV-2 causes inflammatory response around the injection track.


Asunto(s)
Silenciador del Gen/fisiología , Marcación de Gen/métodos , Vectores Genéticos/genética , Biología Molecular/métodos , Núcleo Accumbens/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Dependovirus/genética , Doxiciclina/farmacología , Encefalitis/inducido químicamente , Encefalitis/genética , Técnica del Anticuerpo Fluorescente , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Masculino , Microinyecciones/efectos adversos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/citología , Neuronas/fisiología , Interferencia de ARN/fisiología , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Conducta Estereotipada/efectos de los fármacos , Conducta Estereotipada/fisiología
12.
Hamostaseologie ; 36(2): 77-88, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-25649240

RESUMEN

Atherosclerosis and its major complications - myocardial infarction and stroke - remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD.


Asunto(s)
Arterias/inmunología , Enfermedades Cardiovasculares/inmunología , Citocinas/inmunología , NADPH Oxidasas/inmunología , Estrés Oxidativo/inmunología , Especies Reactivas de Oxígeno/inmunología , Animales , Enfermedades Cardiovasculares/patología , Medicina Basada en la Evidencia , Humanos , Inmunidad Innata/inmunología , Factores Inmunológicos/inmunología , Metabolismo de los Lípidos/inmunología , Modelos Inmunológicos
13.
Free Radic Biol Med ; 52(9): 1897-902, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22406319

RESUMEN

Specific inhibitors of the production of reactive oxygen species (ROS) by the NADPH oxidases (Nox's) are potentially important therapeutic agents in the wide range of human diseases that are characterized by excessive ROS production. It has been proposed that VAS2870 (3-benzyl-7-(2-benzoxazolyl)thio-1,2,3- triazolo[4,5-d]pyrimidine), identified as an inhibitor of Nox2 by small-molecule screening, may serve as an example of such an agent. Here we show that VAS2870 inhibits ROS production in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle, previously identified with Nox4, and thereby abrogates O(2)-coupled redox regulation of the ryanodine receptor-Ca(2+) channel (RyR1). However, we also find that VAS2870 modifies directly identified cysteine thiols within RyR1. Mass spectrometric analysis of RyR1 exposed in situ to VAS2870 and of VAS2870-treated glutathione indicated that thiol modification is through alkylation by the benzyltriazolopyrimidine moiety of VAS2870. Thus, VAS2870 exerts significant off-target effects, and thiol alkylation by VAS2870 (and closely related Nox inhibitors) may in fact replicate some of the effects of ROS on cellular thiol redox status. In addition, we show that SR-localized Nox4 is inhibited by other thiol-alkylating agents, consistent with a causal role for cysteine modification in the inhibition of ROS production by VAS2870.


Asunto(s)
Benzoxazoles/farmacología , Inhibidores Enzimáticos/farmacología , NADPH Oxidasas/antagonistas & inhibidores , Compuestos de Sulfhidrilo/metabolismo , Triazoles/farmacología , Alquilación
15.
Biochem Biophys Res Commun ; 356(3): 733-8, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17382295

RESUMEN

We have recently shown in rats that cocaine-induced behavioral sensitization can be reversed by a 5-day treatment with ondansetron given 3.5 h after daily pergolide injections. In this study we further investigated the molecular/neurochemical alterations underlying cocaine sensitization and pergolide/ondansetron-mediated reversal. Results revealed that glutamic acid decarboxylase (GAD(65)/GAD(67)) is higher abundant in the nucleus accumbens (NAc) than that in the caudate and medial prefrontal cortex (mPFC), while GABA(A) receptor alpha2 subunit level in the NAc shell is less abundant than that in the NAc core, mPFC and caudate. Cocaine sensitization led to (1) a decrease in GAD(67) expression, an increase in total protein kinase C (PKC) zeta subtype and phosphorylated PKC zeta/lambda levels in the NAc core; (2) a decrease in GAD(67) and GABA(A) receptor alpha2 subunit expression, and an increase in phosphorylated PKC zeta/lambda levels in the NAc shell; (3) an increase in GAD(67) expression in the caudate. Importantly, pergolide/ondansetron treatment reversed these alterations. These results suggest that reversal of cocaine-induced behavioral sensitization is associated with reversal of region-specific changes in GABA function and PKC activity in the striatum.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/antagonistas & inhibidores , Glutamato Descarboxilasa/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Receptores de GABA-A/biosíntesis , Animales , Núcleo Caudado/metabolismo , Masculino , Núcleo Accumbens/enzimología , Ondansetrón/farmacología , Pergolida/farmacología , Corteza Prefrontal/enzimología , Ratas , Ratas Sprague-Dawley , Conducta Estereotipada/efectos de los fármacos
16.
Biochemistry ; 44(44): 14528-37, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16262253

RESUMEN

Thioredoxin/glutathione reductase (TGR) is a recently discovered member of the selenoprotein thioredoxin reductase family in mammals. In contrast to two other mammalian thioredoxin reductases, it contains an N-terminal glutaredoxin domain and exhibits a wide spectrum of enzyme activities. To elucidate the reaction mechanism and regulation of TGR, we prepared a recombinant mouse TGR in the selenoprotein form as well as various mutants and individual domains of this enzyme. Using these proteins, we showed that the glutaredoxin and thioredoxin reductase domains of TGR could independently catalyze reactions normally associated with each domain. The glutaredoxin domain is a monothiol glutaredoxin containing a CxxS motif at the active site, which could receive electrons from either the thioredoxin reductase domain of TGR or thioredoxin reductase 1. We also found that the C-terminal penultimate selenocysteine was required for transfer of reducing equivalents from the thiol/disulfide active site of TGR to the glutaredoxin domain. Thus, the physiologically relevant NADPH-dependent activities of TGR were dependent on this residue. In addition, we examined the effects of selenium levels in the diet and perturbations in selenocysteine tRNA function on TGR biosynthesis and found that expression of this protein was regulated by both selenium and tRNA status in liver, but was more resistant to this regulation in testes.


Asunto(s)
Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , Animales , Glutarredoxinas , Humanos , Ratones , Modelos Moleculares , Complejos Multienzimáticos/genética , NADH NADPH Oxidorreductasas/genética , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Conformación Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selenio/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Distribución Tisular
17.
J Biol Chem ; 280(28): 26491-8, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15901730

RESUMEN

Thioredoxin reductases (TRs) are important redox regulatory enzymes, which control the redox state of thioredoxins. Mammals have cytosolic and mitochondrial TRs, which contain an essential selenocysteine residue and reduce cytosolic and mitochondrial thioredoxins. In addition, thioredoxin/glutathione reductase (TGR) was identified, which is a fusion of an N-terminal glutaredoxin domain and the TR module. Here we show that TGR is expressed at low levels in various tissues but accumulates in testes after puberty. The protein is particularly abundant in elongating spermatids at the site of mitochondrial sheath formation but is absent in mature sperm. We found that TGR can catalyze isomerization of protein and interprotein disulfide bonds and localized this function to its thiol domain. TGR targets include proteins that form structural components of the sperm, including glutathione peroxidase GPx4/PHGPx. Together, TGR and GPx4 can serve as a novel disulfide bond formation system. Both enzymes contain a catalytic selenocysteine consistent with the role of selenium in male reproduction.


Asunto(s)
Glutatión Peroxidasa/fisiología , Complejos Multienzimáticos/fisiología , NADH NADPH Oxidorreductasas/fisiología , Proteínas/química , Animales , Sitios de Unión , Catálisis , Reactivos de Enlaces Cruzados/farmacología , Citosol/metabolismo , Disulfuros/química , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Glutatión Peroxidasa/metabolismo , Immunoblotting , Masculino , Ratones , Microscopía Fluorescente , Mitocondrias/metabolismo , Modelos Biológicos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , Peroxidasas/química , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/química , Selenoproteínas , Maduración del Esperma , Espermatozoides/metabolismo , Testículo/metabolismo , Distribución Tisular
18.
Proc Natl Acad Sci U S A ; 100(25): 15229-34, 2003 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-14645704

RESUMEN

It is generally accepted that inhibition of nitric oxide synthase (NOS) facilitates, and thus nitric oxide (NO) inhibits, contractility of skeletal muscle. However, standard assessments of contractility are carried out at a nonphysiological oxygen tension [partial pressure of oxygen (pO2)] that can interfere with NO signaling (95% O2). We therefore examined, in normal and neuronal NOS (nNOS)-deficient mice, the influence of pO2 on whole-muscle contractility and on myocyte calcium flux and sarcomere shortening. Here, we demonstrate a significant enhancement of these measures of muscle performance at low physiological pO2 and an inhibitory influence at higher physiological pO2, which depend on endogenous nNOS. At 95% O2 (which produces oxidative stress; muscle core pO2 approximately 400 mmHg), force production is enhanced but control of contractility by NO/nitrosylation is greatly attenuated. In addition, responsivity to pO2 is altered significantly in nNOS mutant muscle. These results reveal a fundamental role for the concerted action of NO and O2 in physiological regulation of skeletal muscle contractility, and suggest novel molecular aspects of myopathic disease. They suggest further that the role of NO in some cellular systems may require reexamination.


Asunto(s)
Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Animales , Bioensayo , Calcio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Músculos/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Neuronas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA