Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38446738

RESUMEN

The family of Janus Kinases (JAKs) associated with the JAK-signal transducers and activators of transcription signaling pathway plays a vital role in the regulation of various cellular processes. The conformational change of JAKs is the fundamental steps for activation, affecting multiple intracellular signaling pathways. However, the transitional process from inactive to active kinase is still a mystery. This study is aimed at investigating the electrostatic properties and transitional states of JAK1 to a fully activation to a catalytically active enzyme. To achieve this goal, structures of the inhibited/activated full-length JAK1 were modelled and the energies of JAK1 with Tyrosine Kinase (TK) domain at different positions were calculated, and Dijkstra's method was applied to find the energetically smoothest path. Through a comparison of the energetically smoothest paths of kinase inactivating P733L and S703I mutations, an evaluation of the reasons why these mutations lead to negative or positive regulation of JAK1 are provided. Our energy analysis suggests that activation of JAK1 is thermodynamically spontaneous, with the inhibition resulting from an energy barrier at the initial steps of activation, specifically the release of the TK domain from the inhibited Four-point-one, Ezrin, Radixin, Moesin-PK cavity. Overall, this work provides insights into the potential pathway for TK translocation and the activation mechanism of JAK1.


Asunto(s)
Transducción de Señal , Mutación , Dominios Proteicos
2.
Small ; 20(23): e2309206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38149505

RESUMEN

Ferroptosis is an emerging non-apoptotic death process, mainly involving lipid peroxidation (LPO) caused by iron accumulation, which is potentially lethal to the intrinsically apoptotic-resistant malignant tumor. However, it is still restricted by the inherent antioxidant systems of tumor cells and the poor efficacy of traditional iron-based ferroptosis initiators. Herein, the study develops a novel ferroptosis-inducing agent based on PEGylated Cu+/Cu2+-doped black phosphorus@polypyrrole heterojunction (BP@CPP), which is constructed by utilizing the phosphate on the surface of BP to chelate Cu ions and initiating subsequent in situ polymerization of pyrrole. As a novel Z-scheme heterojunction, BP@CPP possesses an excellent photocatalytic activity in which the separated electron-hole pairs under laser irradiation endow it with powerful oxidizing and reducing capacities, which synergy with Cu+/Cu2+ self-cycling catalyzing Fenton-like reaction to further strengthen reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, ultimately leading to efficient ferroptosis. Systematic in vitro and in vivo evaluations demonstrate that BP@CPP effectively inhibit tumor growth by inducing desired ferroptosis while maintaining a favorable biosafety in the body. Therefore, the developed BP@CPP-based ferroptosis initiator provides a promising strategy for ferroptosis-like cancer therapy.


Asunto(s)
Cobre , Ferroptosis , Oxidación-Reducción , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Cobre/química , Cobre/farmacología , Animales , Línea Celular Tumoral , Polímeros/química , Polímeros/farmacología , Pirroles/química , Pirroles/farmacología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones , Glutatión/metabolismo , Fósforo/química
3.
Fish Shellfish Immunol ; 150: 109661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821227

RESUMEN

IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (∼12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VANR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Tiburones , Tiburones/inmunología , Tiburones/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Antígenos/inmunología , Antígenos/genética , Enfermedades de los Peces/inmunología
4.
Environ Res ; 259: 119537, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960362

RESUMEN

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolutions of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiies of electron transfer and the contents of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.

5.
Appl Opt ; 63(8): 2109-2120, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38568655

RESUMEN

This paper proposes a switchable multifunctional metamaterial device operating in the terahertz (THz) band. The device is loaded with an equivalent diode and utilizes vanadium dioxide (V O 2). The middle layer of the whole device, a metal layer, divides the device into the I side and the II side. When the diode is ON, the I side can achieve dual-band absorption at 1.975 and 4.345 THz. When the diode is OFF, the I side can achieve single-band absorption at 4.28 THz. In the case of V O 2 being insulating, the II side can achieve linear-to-linear (LTL) polarization conversion at 2.342-4.18 THz. In the case of V O 2 being conductive, the II side can realize linear-to-circular (LTC) polarization conversion at 2.105-3.283 THz. The device provides a new strategy for the subsequent combination of multiple functions. The device can be used in electromagnetic stealth, intelligent applications, radiometers, and sensors and has relatively large application potential in miniaturized multifunctional metamaterials and THz band research.

6.
Biophys J ; 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38160255

RESUMEN

Drosophila Ncd proteins are motor proteins that play important roles in spindle organization. Ncd and the tubulin dimer are highly charged. Thus, it is crucial to investigate Ncd-tubulin dimer interactions in the presence of ions, especially ions that are bound or restricted at the Ncd-tubulin dimer binding interfaces. To consider the ion effects, widely used implicit solvent models treat ions implicitly in the continuous solvent environment without focusing on the individual ions' effects. But highly charged biomolecules such as the Ncd and tubulin dimer may capture some ions at highly charged regions as bound ions. Such bound ions are restricted to their binding sites; thus, they can be treated as part of the biomolecules. By applying multiscale computational methods, including the machine-learning-based Hybridizing Ions Treatment-2 program, molecular dynamics simulations, DelPhi, and DelPhiForce, we studied the interaction between the Ncd motor domain and the tubulin dimer using a hybrid solvent model, which considers the bound ions explicitly and the other ions implicitly in the solvent environment. To identify the importance of treating bound ions explicitly, we also performed calculations using the implicit solvent model without considering the individual bound ions. We found that the calculations of the electrostatic features differ significantly between those of the hybrid solvent model and the pure implicit solvent model. The analyses show that treating bound ions at highly charged regions explicitly is crucial for electrostatic calculations. This work proposes a machine-learning-based approach to handle the bound ions using the hybrid solvent model. Such an approach is not only capable of handling kinesin-tubulin complexes but is also appropriate for other highly charged biomolecules, such as DNA/RNA, viral capsid proteins, etc.

7.
J Am Chem Soc ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36930579

RESUMEN

Because of tumor heterogeneity and the immunosuppressive tumor microenvironment, most cancer vaccines typically do not elicit robust antitumor immunological responses in clinical trials. In this paper, we report findings about a bioadhesive nanoparticle (BNP)-based separable cancer vaccine, FeSHK@B-ovalbumin (OVA), to target multi-epitope antigens and exert effective cancer immunotherapy. After the FeSHK@B-OVA "nanorocket" initiates the "satellite-rocket separation" procedure in the acidic tumor microenvironment, the FeSHK@B "launch vehicle" can amplify intracellular oxidative stress persistently. This procedure allows for bioadhesiveness-mediated prolonged drug retention within the tumor tissue and triggers the immunogenic death of tumor cells that transforms the primary tumors into antigen depots, which acts synergistically with the OVA "satellite" to trigger robust antigen-specific antitumor immunity. The cooperation of these two immunostimulants not only efficiently inhibits the primary tumor growth and provokes durable antigen-specific immune activation in vivo but also activates a long-term and robust immune memory effect to resist tumor rechallenge and metastasis. These results highlight the enormous potential of FeSHK@B-OVA to serve as an excellent therapeutic and prophylactic cancer nanovaccine. By leveraging the antigen depots in situ and the synergistic effect among multi-epitope antigens, such a nanovaccine strategy with stealthy bioadhesion may offer a straightforward and efficient approach to developing various cancer vaccines for different types of tumors.

8.
Cancer Sci ; 114(6): 2445-2459, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36799474

RESUMEN

Neuroendocrine prostate cancer (NEPC), the most lethal subtype of castration-resistant prostate cancer (PCa), may evolve from the neuroendocrine differentiation (NED) of PCa cells. However, the molecular mechanism that triggers NED is unknown. Trigred motif 36 (TRIM36), a member of the TRIM protein family, exhibits oncogenic or anti-oncogenic roles in various cancers. We have previously reported that TRIM36 is highly expressed to inhibit the invasion and proliferation of PCa. In the present study, we first found that TRIM36 was lowly expressed in NEPC and its overexpression suppressed the NED of PCa. Next, based on proteomic analysis, we found that TRIM36 inhibited the glycolysis pathway through suppressing hexokinase 2 (HK2), a crucial glycolytic enzyme catalyzing the conversion of glucose to glucose-6-phosphate. TRIM36 specifically bound to HK2 through lysine 48 (lys48)-mediated ubiquitination of HK2. Moreover, TRIM36-mediated ubiquitination degradation of HK2 downregulated the level of glutathione peroxidase 4 (GPx4), a process that contributed to ferroptosis. In conclusion, TRIM36 can inhibit glycolysis via lys48-mediated HK2 ubiquitination to reduce GPX4 expression and activate ferroptosis, thereby inhibiting the NED in PCa. Targeting TRIM36 might be a promising approach to retard NED and treat NEPC.


Asunto(s)
Hexoquinasa , Neoplasias de la Próstata , Masculino , Humanos , Hexoquinasa/metabolismo , Proteómica , Línea Celular Tumoral , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Ubiquitinación , Diferenciación Celular
9.
Mar Drugs ; 21(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37999396

RESUMEN

Phycobiliproteins (PBPs) are natural water-soluble pigment proteins, which constitute light-collecting antennae, and function in algae photosynthesis, existing in cyanobacteria, red algae, and cryptomonads. They are special pigment-protein complexes in algae with a unique structure and function. According to their spectral properties, PBPs can be mainly divided into three types: allophycocyanin, phycocyanin, and PE. At present, there are two main sources of PBPs: one is natural PBPs extracted from algae and the other way is recombinant PBPs which are produced in engineered microorganisms. The covalent connection between PBP and streptavidin was realized by gene fusion. The bridge cascade reaction not only improved the sensitivity of PBP as a fluorescent probe but also saved the preparation time of the probe, which expands the application range of PBPs as fluorescent probes. In addition to its function as a light-collecting antenna in photosynthesis, PBPs also have the functions of biological detection, ion detection, and fluorescence imaging. Notably, increasing studies have designed novel PBP-based far-red fluorescent proteins, which enable the tracking of gene expression and cell fate.


Asunto(s)
Colorantes Fluorescentes , Ficobiliproteínas , Fotosíntesis
10.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003385

RESUMEN

Cardiovascular diseases are a leading cause of worldwide mortality, and exosomes have recently gained attention as key mediators of intercellular communication in these diseases. Exosomes are double-layered lipid vesicles that can carry biomolecules such as miRNAs, lncRNAs, and circRNAs, and the content of exosomes is dependent on the cell they originated from. They can be involved in the pathophysiological processes of cardiovascular diseases and hold potential as diagnostic and monitoring tools. Exosomes mediate intercellular communication, stimulate or inhibit the activity of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. Exosomes can be released from various types of cells, including endothelial cells, smooth muscle cells, cardiomyocytes, fibroblasts, platelets, adipocytes, immune cells, and stem cells. In this review, we highlight the communication between different cell-derived exosomes and cardiovascular cells, with a focus on the roles of RNAs. This provides new insights for further exploring targeted therapies in the clinical management of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Exosomas , Humanos , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , ARN no Traducido/metabolismo , Comunicación Celular/genética , Miocitos Cardíacos/metabolismo , Exosomas/metabolismo
11.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834019

RESUMEN

Janus tyrosine kinase (JAK) variants are known drivers for hematological disorders. With the full-length structure of mouse JAK1 being recently resolved, new observations on the localization of variants within closed, open, and dimerized JAK structures are possible. Full-length homology models of human wild-type JAK family members were developed using the Glassman et al. reported mouse JAK1 containing the V658F structure as a template. Many mutational sites related to proliferative hematological disorders reside in the JH2 pseudokinase domains facing the region important in dimerization of JAKs in both closed and open states. More than half of all JAK gain of function (GoF) variants are changes in polarity, while only 1.2% are associated with a change in charge. Within a JAK1-JAK3 homodimer model, IFNLR1 (PDB ID7T6F) and the IL-2 common gamma chain subunit (IL2Rγc) were aligned with the respective dimer implementing SWISS-MODEL coupled with ChimeraX. JAK3 variants were observed to encircle the catalytic site of the kinase domain, while mutations in the pseudokinase domain align along the JAK-JAK dimerization axis. FERM domains of JAK1 and JAK3 are identified as a hot spot for hematologic malignancies. Herein, we propose new allosteric surfaces for targeting hyperactive JAK dimers.


Asunto(s)
Neoplasias Hematológicas , Quinasas Janus , Animales , Humanos , Ratones , Quinasas Janus/genética , Tirosina/genética , Janus Quinasa 1/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Mutación , Desarrollo de Medicamentos , Janus Quinasa 2/genética , Receptores de Interferón/genética
12.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569303

RESUMEN

Janus tyrosine kinase 3 (JAK3) is primarily expressed in immune cells and is needed for signaling by the common gamma chain (γc) family of cytokines. Abnormal JAK3 signal transduction can manifest as hematological disorders, e.g., leukemia, severe combined immunodeficiency (SCID) and autoimmune disease states. While regulatory JAK3 phosphosites have been well studied, here a functional proteomics approach coupling a JAK3 autokinase assay to mass spectrometry revealed ten previously unreported autophosphorylation sites (Y105, Y190, Y238, Y399, Y633, Y637, Y738, Y762, Y824, and Y841). Of interest, Y841 was determined to be evolutionarily conserved across multiple species and JAK family members, suggesting a broader role for this residue. Phospho-substitution mutants confirmed that Y841 is also required for STAT5 tyrosine phosphorylation. The homologous JAK1 residue Y894 elicited a similar response to mutagenesis, indicating the shared importance for this site in JAK family members. Phospho-specific Y841-JAK3 antibodies recognized activated kinase from various T-cell lines and transforming JAK3 mutants. Computational biophysics analysis linked Y841 phosphorylation to enhanced JAK3 JH1 domain stability across pH environments, as well as to facilitated complementary electrostatic JH1 dimer formation. Interestingly, Y841 is not limited to tyrosine kinases, suggesting it represents a conserved ubiquitous enzymatic function that may hold therapeutic potential across multiple kinase families.


Asunto(s)
Factor de Transcripción STAT5 , Transducción de Señal , Fosforilación , Factor de Transcripción STAT5/genética , Janus Quinasa 1/genética , Procesamiento Proteico-Postraduccional , Tirosina/metabolismo
13.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047778

RESUMEN

Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.


Asunto(s)
Interleucina-2 , Leucemia , Humanos , Fosforilación , Interleucina-2/genética , Interleucina-2/metabolismo , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Transducción de Señal , Quinasas Janus/metabolismo , Janus Quinasa 3/genética , Janus Quinasa 3/metabolismo
14.
J Chem Phys ; 156(3): 035101, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35065578

RESUMEN

Sudden cardiac death contributed to half of all deaths from cardiovascular diseases. The mechanism of the kinetic cycle of cardiac myosin is crucial for heart protection and drug development. The state change in the myosin kinetic cycle from the rigor state to the post-rigor state is fundamental to explain binding and dissociation. Here, we used ß-cardiac myosin in the rigor and post-rigor states to model the actomyosin complexes. Molecular dynamics simulations, electrostatic analysis, and energetic analysis of actomyosin complexes were performed in this work. The results showed that there are fewer interactions and lower electrostatic binding strength in the post-rigor state than in the rigor state. In the post-rigor state, there were higher free binding energy, fewer salt bridges, and fewer hydrogen bonds. The results showed a lower binding affinity in the post-rigor state than in the rigor state. The decrease in the binding affinity provided important conditions for dissociation of the myosin from the actin filament. Although previous studies focused mostly on the binding process, this study provides evidence of dissociation, which is even more important in the myosin kinetic cycle. This research on the mechanism of myosin kinetic cycles provides a novel direction for future genetic disease studies.


Asunto(s)
Actomiosina , Miosinas Cardíacas , Citoesqueleto de Actina , Actomiosina/metabolismo , Adenosina Trifosfato , Modelos Químicos , Simulación de Dinámica Molecular , Electricidad Estática
15.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142260

RESUMEN

This review outlines the role of electrostatics in computational molecular biophysics and its implication in altering wild-type characteristics of biological macromolecules, and thus the contribution of electrostatics to disease mechanisms. The work is not intended to review existing computational approaches or to propose further developments. Instead, it summarizes the outcomes of relevant studies and provides a generalized classification of major mechanisms that involve electrostatic effects in both wild-type and mutant biological macromolecules. It emphasizes the complex role of electrostatics in molecular biophysics, such that the long range of electrostatic interactions causes them to dominate all other forces at distances larger than several Angstroms, while at the same time, the alteration of short-range wild-type electrostatic pairwise interactions can have pronounced effects as well. Because of this dual nature of electrostatic interactions, being dominant at long-range and being very specific at short-range, their implications for wild-type structure and function are quite pronounced. Therefore, any disruption of the complex electrostatic network of interactions may abolish wild-type functionality and could be the dominant factor contributing to pathogenicity. However, we also outline that due to the plasticity of biological macromolecules, the effect of amino acid mutation may be reduced, and thus a charge deletion or insertion may not necessarily be deleterious.


Asunto(s)
Aminoácidos , Proteínas , Biofisica , Proteínas/química , Electricidad Estática
16.
BMC Med Genet ; 21(1): 139, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600280

RESUMEN

BACKGROUND: Published studies present conflicting data regarding the impact of Thrombospondin-1 (TSP-1) expression on prognosis of various cancers. We performed this meta-analysis to illustrate the preliminary predictive value of TSP-1. METHODS: Twenty-four studies with a total of 2379 patients were included. A comprehensive literature search was performed by using PubMed, Cochrane Library, Web of Science, Embase, and hand searches were also conducted of relevant bibliographies. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were initially identified to explore relationships between TSP-1 expression and patient prognosis. RESULTS: A total of 24 eligible studies were included in this meta-analysis. Our results showed that high level of TSP-1 was correlated significantly with poor overall survival (OS) (HR = 1.40, 95% CI: 1.17 ~ 1.68; P<0.001). However, high TSP-1 expression predicted no significant impact on progression-free survival (PFS)/ metastasis-free survival (MFS) (HR = 1.35, 95%CI: 0.87-2.10; P = 0.176) and disease-free survival (DFS)/ recurrence-free survival (RFS) (HR = 1.40, 95%CI: 0.77-2.53; P = 0.271). In addition, we performed subgroup analyses which showed that high TSP-1 expression predicted poor prognosis in breast cancer and gynecological cancer. Additionally, the relatively small number of studies on PFS/MFS and DFS/RFS is a limitation. The data extracted through Kaplan-Meier curves may not be accurate. Moreover, only English articles were included in this article, which may lead to deviations in the results. CONCLUSIONS: Our findings indicated high TSP-1 expression may act as a promising biomarker of poor prognosis in cancers, especially in breast cancer and gynecological cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/metabolismo , Trombospondina 1/metabolismo , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Humanos , Pronóstico , Modelos de Riesgos Proporcionales , Sesgo de Publicación
17.
J Theor Comput Chem ; 19(3)2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-34211240

RESUMEN

One quarter of the world's population are infected by Mycobacterium tuberculosis (Mtb), which is a leading death-causing bacterial pathogen. Recent evidence has demonstrated that two virulence factors, ESAT-6 and CFP-10, play crucial roles in Mtb's cytosolic translocation. Many efforts have been made to study the ESAT-6 and CFP-10 proteins. Some studies have shown that ESAT-6 has an essential role in rupturing phagosome. However, the mechanisms of how ESAT-6 interacts with the membrane have not yet been fully understood. Recent studies indicate that the ESAT-6 disassociates with CFP-10 upon their interaction with phagosome membrane, forming a membrane-spanning pore. Based on these observations, as well as the available structure of ESAT-6, ESAT-6 is hypothesized to form an oligomer for membrane insertion as well as rupturing. Such an ESAT-6 oligomer may play a significant role in the tuberculosis infection. Therefore, deeper understanding of the oligomerization of ESAT-6 will establish new directions for tuberculosis treatment. However, the structure of the oligomer of ESAT-6 is not known. Here, we proposed a comprehensive approach to model the complex structures of ESAT-6 oligomer inside a membrane. Several computational tools, including MD simulation, symmetrical docking, MM/PBSA, are used to obtain and characterize such a complex structure. Results from our studies lead to a well-supported hypothesis of the ESAT-6 oligomerization as well as the identification of essential residues in stabilizing the ESAT-6 oligomer which provide useful insights for future drug design targeting tuberculosis. The approach in this research can also be used to model and study other cross-membrane complex structures.

18.
Comput Sci Eng ; 22(6): 21-29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33762895

RESUMEN

A large population in the world has been infected by COVID-19. Understanding the mechanisms of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is important for management and treatment of the COVID-19. When it comes to the infection process, one of the most important proteins in SARS-CoV-2 is the spike (S) protein, which is able to bind to human Angiotensin-Converting Enzyme 2 (ACE2) and initializes the entry of the host cell. In this study, we implemented multi-scale computational approaches to study the electrostatic features of the interfaces of the SARS-CoV-2 S protein Receptor Binding Domain (RBD) and ACE2. The simulations and analyses were performed on high-performance computing resources in Texas Advanced Computing Center (TACC). Our study identified key residues on the SARS-CoV-2, which can be used as targets for future drug design. The results shed lights on future drug design and therapeutic targets for COVID-19.

19.
Arch Pharm (Weinheim) ; 352(8): e1900066, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31373047

RESUMEN

A series of pyrazolo[3,4-b]pyridine derivatives were designed, synthesized, and evaluated for their activation activity toward adenosine 5'-monophosphate-activated protein kinase (AMPK). According to the enzyme activity, the pyrazole N-H exposure and para substitution on the diphenyl group were proved to be essential for the activation potency. Compound 17f showed equal activation compared with A-769662. In the molecular modeling study, compound 17f exhibited important hydrogen bond interaction with Lys29, Asp88, and Arg83. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays on the NRK-49F cell line showed that potent enzyme activators could effectively inhibit cell proliferation, especially for 17f (EC50 [AMPKα1γ1ß1] = 0.42 µM, efficacy = 79%; IC50 [NRK-49F cell line] = 0.78 µM). These results might provide new insights to explore novel AMPK activators.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Piridinas/síntesis química , Piridinas/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
20.
J Environ Manage ; 219: 84-94, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29730593

RESUMEN

Natural pyrite was an economical choice for efficient Cr(VI) remediation, while its deep utilization was inhibited due to the passivation effect. In this study, pyrite passivation/dissolution and active sites regeneration mechanism under the activity of acidophilic bacteria with different energy metabolism characteristic in Cr(VI) reduction have been investigated. The reduction capacity was in the order of Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans(S), Acidithiobacillus ferrooxidans(Fe), Leptospirillum ferrooxidans and chemical control. The maximal reduction efficiency was achieved in A. thiooxidans system, which is 4.5 times higher than the L. ferrooxidans system. In chemical system, sulfur and Fe(III)/Cr(III)-oxyhydroxysulphate accumulation would result in pyrite passivation. A. thiooxidans attached on pyrite surface and exerted synergistic effect on pyrite corrosion coupled with Cr(VI). Sulfur oxidation promoted proton regeneration, pyrite lattice Fe(II) dissolution and active sites regeneration, which were beneficial to sustainable Cr(VI) reduction. Secondary iron mineral formation on pyrite was accelerated with the iron oxidation bacteria activity increasing. Excessive oxidation to surface sites Fe(II) and the accumulation of S0/Sn2- led to the passivation effect in L. ferrooxidans system. Cr(VI) acquired electron from Fe(II) and disulfide and resulted in the bond break between them. The combined effect of specific sulfur oxidizing bacteria activity and Cr(VI) oxidation efficient promoted pyrite dissolution and active sites regeneration. The interaction between acidophilic bacteria and pyrite significantly enhanced Cr(VI) reduction efficiency.


Asunto(s)
Acidithiobacillus , Cromo , Contaminación Ambiental/prevención & control , Sulfuros , Bacterias , Compuestos Férricos , Minerales , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA