RESUMEN
Halloysite nanotubes (HNTs) have emerged as a highly regarded choice in biomedical research due to their exceptional attributes, including superior loading capacity, customizable surface characteristics, and excellent biocompatibility. HNTs feature tubular structures comprising alumina and silica layers, endowing them with a large surface area and versatile surface chemistries that facilitate selective modifications. Moreover, their substantial pore volume and wide range of pore sizes enable efficient entrapment of diverse functional molecules. This comprehensive review highlights the broad biomedical application spectrum of HNTs, shedding light on their potential as innovative and effective therapeutic agents across various diseases. It emphasizes the necessity of optimizing drug delivery techniques, developing targeted delivery systems, rigorously evaluating biocompatibility and safety through preclinical and clinical investigations, exploring combination therapies, and advancing scientific understanding. With further advancements, HNTs hold the promise to revolutionize the pharmaceutical industry, opening new avenues for the development of transformative treatments.
Asunto(s)
Nanotubos , Arcilla/química , Nanotubos/química , Sistemas de Liberación de Medicamentos/métodosRESUMEN
The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2.
RESUMEN
Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2P@NiMoO4/NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2P@NiMoO4/NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2, respectively, surpassing that of Ni2P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2P/NF (120 h) and Ni(OH)2/NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2-/PO4 3- from Ni2P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO-.
RESUMEN
Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.
RESUMEN
Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2)-based energy systems (e.g., storing wind power as H2), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2) evolution material, can be boosted by employing tungstate (WO4 2-) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2, only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2-.
RESUMEN
BACKGROUND: Resting-state functional MRI (rs-fMRI) has identified static changes of local brain activity among patients with intracerebral hemorrhage (ICH). However, the dynamic and concordance-related characteristics of brain activity remain unclear. PURPOSE: To investigate static, dynamic, and concordance-related features of the regional brain activity of young non-disabled ICH patients. STUDY TYPE: Prospective. SUBJECTS: Thirty-three ICH patients (modified Rankin Scale score ≤2, 21% female, 46.36 ± 6.53) and 33 matched healthy controls (HCs) (21% female, 47.64 ± 6.16). FIELD STRENGTH/SEQUENCE: 3-T, rs-fMRI using gradient echo-planar imaging, T1-weighted imaging. ASSESSMENT: Neuropsychological and rs-fMRI data were acquired from all participants. Amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity, global signal correlation (GSCorr) and degree centrality (DC), and their dynamic and concordance-related changes with sliding window analysis were calculated based on rs-fMRI data at a whole-brain level. The burden of cerebral small vascular diseases (cSVD) was assessed by cSVD scores. All hemorrhage lesions were delineated on normalized T1 images. STATISTICAL TESTS: Multiple regression models, a voxel-level uncorrected P < 0.001, a cluster-level false discovery rate (FDR) corrected q < 0.05, a re-corrected qFDR <0.05 were considered significant. Pearson or Spearman correlation analyses between fMRI data and neurocognitive performance were performed. RESULTS: Compared to HCs, ICH patients showed significant abnormal changes of ALFF, dynamic ALFF, fALFF, ReHo, dynamic ReHo, GSCorr, DC, and voxel-wise concordance in multiple brain regions mainly including the bilateral cerebellar hemispheres, ipsilesional thalamus, and bilateral middle cingulum gyrus. The ALFF in the cerebellar posterior lobe and thalamus were significantly associated with attention (r = -0.481) and executive function (rho = -0.521) in ICH patients. DATA CONCLUSION: Young non-disabled ICH patients exhibit static, dynamic, and concordance-related alterations of local brain activity, part of which shows associations with cognitive functions. These findings may help comprehensively understand the mechanism of cognitive impairment after ICH. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Asunto(s)
Encéfalo , Hemorragia Cerebral , Disfunción Cognitiva , Imagen por Resonancia Magnética , Humanos , Femenino , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/fisiopatología , Hemorragia Cerebral/complicaciones , Masculino , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Persona de Mediana Edad , Descanso , Mapeo Encefálico/métodos , Pruebas NeuropsicológicasRESUMEN
BACKGROUND: Insular low-grade gliomas (LGGs) are surgically challenging due to their proximity to critical structures like the corticospinal tract (CST). PURPOSE: This study aims to determine if preoperative CST shape metrics correlate with postoperative motor complications in insular LGG patients. STUDY TYPE: Retrospective. POPULATION: 42 patients (mean age 40.26 ± 10.21 years, 25 male) with insular LGGs. FIELD STRENGTH/SEQUENCE: Imaging was performed using 3.0 Tesla MRI, incorporating T1-weighted magnetization-prepared rapid gradient-echo, T2-weighted space dark-fluid with spin echo (SE), and diffusional kurtosis imaging (DKI) with gradient echo sequences, all integrated with echo planar imaging. ASSESSMENT: Shape metrics of the CST, including span, irregularity, radius, and irregularity of end regions (RER and IER, respectively), were compared between the affected and healthy hemispheres. Total end region radius (TRER) was determined as the sum of RER 1 and RER 2. The relationships between shape metrics and postoperative short-term (4 weeks) and long-term (>8 weeks) motor disturbances assessing by British Medical Research Council grading system, was analyzed using multivariable regression models. STATISTICAL TESTING: Paired t-tests compared CST metrics between hemispheres. Logistic regression identified associations between these metrics and motor disturbances. The models were developed using all available data and there was no independent validation dataset. Significance was set at P < 0.05. RESULTS: Short-term motor disturbance risk was significantly related to TRER (OR = 199.57). Long-term risk significantly correlated with IER 1 (OR = 59.84), confirmed as a significant marker with an AUC of 0.78. Furthermore, the CST on the affected side significantly had the greater irregularity, larger TRER and RER 1, and smaller span compared to the healthy side. DATA CONCLUSION: Preoperative evaluation of TRER and IER 1 metrics in the CST may serve as a tool for assessing the risk of postoperative motor complications in insular LGG patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Asunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Complicaciones Posoperatorias , Tractos Piramidales , Humanos , Masculino , Glioma/diagnóstico por imagen , Glioma/cirugía , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Tractos Piramidales/diagnóstico por imagen , Persona de Mediana Edad , Complicaciones Posoperatorias/diagnóstico por imagenRESUMEN
PURPOSE: To assess the utility of combining contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics features with clinical variables in predicting the response to induction chemotherapy (IC) for primary central nervous system lymphoma (PCNSL). METHODS: A total of 131 patients with PCNSL (101 in the training set and 30 in the testing set) who had undergone contrast-enhanced MRI scans were retrospectively analyzed. Pyradiomics was utilized to extract radiomics features, and the clinical variables of the patients were gathered. Radiomics prediction models were developed using different combinations of feature selection methods and machine learning models, and the best combination was ultimately chosen. We screened clinical variables associated with treatment outcomes and developed clinical prediction models. The predictive performance of radiomics model, clinical model, and combined model, which integrates the best radiomics model and clinical characteristics, was independently assessed and compared using Receiver Operating Characteristic (ROC) curves. RESULTS: In total, we extracted 1598 features. The best radiomics model we selected as the best utilized T-test and Recursive Feature Elimination (RFE) for feature selection and logistic regression for model building. Serum Interleukin 2 Receptor (IL-2R) and Eastern Cooperative Oncology Group (ECOG) Score were utilized to develop a clinical predictive model for assessing the response to induction chemotherapy. The results of the testing set revealed that the combined prediction model (radiomics and IL-2R) achieved the highest area under the ROC curve at 0.868 (0.683, 0.967), followed by the radiomics model at 0.857 (0.681, 0.957), and the clinical prediction model (IL-2R and ECOG) at 0.618 (0.413, 0.797). The combined model was significantly more accurate than the clinical model, with an AUC of 0.868 compared to 0.618 (P < 0.05). While the radiomics model had slightly better predictive power than the clinical model, this difference was not statistically significant (AUC, 0.857 vs. 0.618, P > 0.05). CONCLUSIONS: Our prediction model, which combines radiomics signatures from CE-MRI with serum IL-2R, can effectively stratify patients with PCNSL before high-dose methotrexate (HD-MTX) -based chemotherapy.
Asunto(s)
Quimioterapia de Inducción , Linfoma , Humanos , Modelos Estadísticos , Pronóstico , Radiómica , Estudios Retrospectivos , Imagen por Resonancia Magnética , Sistema Nervioso Central , Linfoma/diagnóstico por imagen , Linfoma/tratamiento farmacológicoRESUMEN
OBJECTIVES: This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS: We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS: The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION: Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Metilación de ADN , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/tratamiento farmacológico , Enzimas Reparadoras del ADN/genética , O(6)-Metilguanina-ADN Metiltransferasa/genética , Metilasas de Modificación del ADN/genética , Regiones Promotoras Genéticas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Supresoras de Tumor/genéticaRESUMEN
Seawater electrolysis is an attractive way of making H2 in coastal areas, and NiFe-based materials are among the top options for alkaline seawater oxidation (ASO). However, ample Cl- in seawater can severely corrode catalytic sites and lead to limited lifespans. Herein, we report that in situ carbon oxyanion self-transformation (COST) from oxalate to carbonate on a monolithic NiFe oxalate micropillar electrode allows safeguard of high-valence metal reaction sites in ASO. In situ/ex situ studies show that spontaneous, timely, and appropriate COST safeguards active sites against Cl- attack during ASO even at an ampere-level current density (j). Our NiFe catalyst shows efficient and stable ASO performance, which requires an overpotential as low as 349â mV to attain a j of 1â A cm-2 . Moreover, the NiFe catalyst with protective surface CO3 2- exhibits a slight activity degradation after 600â h of electrolysis under 1â A cm-2 in alkaline seawater. This work reports effective catalyst surface design concepts at the level of oxyanion self-transformation, acting as a momentous step toward defending active sites in seawater-to-H2 conversion systems.
RESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has rapidly escalated into the largest global health emergency, which pushes to develop detection kits for the detection of COVID-19 with high sensitivity, specificity, and fast analysis. Here, aptamer-functionalized MXene nanosheet is demonstrated as a novel bionanosensor that detects COVID-19. Upon binding to the spike receptor binding domain of SARS-CoV-2, the aptamer probe is released from MXene surface restoring the quenched fluorescence. The performances of the fluorosensor are evaluated using antigen protein, cultured virus, and swab specimens from COVID-19 patients. It is evidenced that this sensor can detect SARS-CoV-2 spike protein at final concentration of 38.9 fg mL-1 and SARS-CoV-2 pseudovirus (limit of detection: 7.2 copies) within 30 min. Its application for clinical samples analysis is also demonstrated successfully. This work offers an effective sensing platform for sensitive and rapid detection of COVID-19 with high specificity.
Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Pandemias , OligonucleótidosRESUMEN
Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is a potential sustainable route for large-scale ambient ammonia (NH3 ) synthesis and regulating the nitrogen cycle. However, as this reaction involves multi-electron transfer steps, it urgently needs efficient electrocatalysts on promoting NH3 selectivity. Herein, a rational design of Co nanoparticles anchored on TiO2 nanobelt array on titanium plate (Co@TiO2 /TP) is presented as a high-efficiency electrocatalyst for NO3 - RR. Density theory calculations demonstrate that the constructed Schottky heterostructures coupling metallic Co with semiconductor TiO2 develop a built-in electric field, which can accelerate the rate determining step and facilitate NO3 - adsorption, ensuring the selective conversion to NH3 . Expectantly, the Co@TiO2 /TP electrocatalyst attains an excellent Faradaic efficiency of 96.7% and a high NH3 yield of 800.0 µmol h-1 cm-2 under neutral solution. More importantly, Co@TiO2 /TP heterostructure catalyst also presents a remarkable stability in 50-h electrolysis test.
RESUMEN
Electroreduction of nitrite (NO2 - ) to valuable ammonia (NH3 ) offers a sustainable and green approach for NH3 synthesis. Here, a Cu3 P@TiO2 heterostructure is rationally constructed as an active catalyst for selective NO2 - -to-NH3 electroreduction, with rich nanosized Cu3 P anchored on a TiO2 nanoribbon array on Ti plate (Cu3 P@TiO2 /TP). When performed in the 0.1 m NaOH with 0.1 m NaNO2 , the Cu3 P@TiO2 /TP electrode obtains a large NH3 yield of 1583.4 µmol h-1 cm-2 and a high Faradaic efficiency of 97.1%. More importantly, Cu3 P@TiO2 /TP also delivers remarkable long-term stability for 50 h electrolysis. Theoretical calculations indicate that intermediate adsorption/conversion processes on Cu3 P@TiO2 interfaces are synergistically optimized, substantially facilitating the conversion of NO2 - -to-NH3 .
RESUMEN
Synthesis of green ammonia (NH3 ) via electrolysis of nitric oxide (NO) is extraordinarily sustainable, but multielectron/proton-involved hydrogenation steps as well as low concentrations of NO can lead to poor activities and selectivities of electrocatalysts. Herein, it is reported that oxygen-defective TiO2 nanoarray supported on Ti plate (TiO2- x /TP) behaves as an efficient catalyst for NO reduction to NH3 . In 0.2 m phosphate-buffered electrolyte, such TiO2- x /TP shows competitive electrocatalytic NH3 synthesis activity with a maximum NH3 yield of 1233.2 µg h-1 cm-2 and Faradaic efficiency of 92.5%. Density functional theory calculations further thermodynamically faster NO deoxygenation and protonation processes on TiO2- x (101) compared to perfect TiO2 (101). And the low energy barrier of 0.7 eV on TiO2- x (101) for the potential-determining step further highlights the greatly improved intrinsic activity. In addition, a Zn-NO battery is fabricated with TiO2- x /TP and Zn plate to obtain an NH3 yield of 241.7 µg h-1 cm-2 while providing a peak power density of 0.84 mW cm-2 .
RESUMEN
Ammonia (NH3 ) is an indispensable feedstock for fertilizer production and one of the most ideal green hydrogen rich fuel. Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is being explored as a promising strategy for green to synthesize industrial-scale NH3 , which has nonetheless involved complex multi-reaction process. This work presents a Pd-doped Co3 O4 nanoarray on titanium mesh (Pd-Co3 O4 /TM) electrode for highly efficient and selective electrocatalytic NO3 - RR to NH3 at low onset potential. The well-designed Pd-Co3 O4 /TM delivers a large NH3 yield of 745.6 µmol h-1 cm-2 and an extremely high Faradaic efficiency (FE) of 98.7% at -0.3 V with strong stability. These calculations further indicate that the doping Co3 O4 with Pd improves the adsorption characteristic of Pd-Co3 O4 and optimizes the free energies for intermediates, thereby facilitating the kinetics of the reaction. Furthermore, assembling this catalyst in a Zn-NO3 - battery realizes a power density of 3.9 mW cm-2 and an excellent FE of 98.8% for NH3 .
RESUMEN
Constructing efficient and low-cost oxygen evolution reaction (OER) catalysts operating in seawater is essential for green hydrogen production but remains a great challenge. In this study, we report an iron doped cobalt carbonate hydroxide nanowire array on nickel foam (Fe-CoCH/NF) as a high-efficiency OER electrocatalyst. In alkaline seawater, such Fe-CoCH/NF demands an overpotential of 387 mV to drive 500 mA cm-2, superior to that of CoCH/NF (597 mV). Moreover, it achieves excellent electrochemical and structural stability in alkaline seawater.
RESUMEN
Electrocatalytic nitrite (NO2-) reduction offers the potential to synthesize high-value ammonia (NH3) while simultaneously removing NO2- pollution from aqueous solutions, but it requires high-efficiency catalysts to drive the complex six-electron reaction. Herein, cobalt-nanoparticle-decorated 3D porous nitrogen-doped carbon network (Co@NC) is proven as a high-efficiency catalyst for the selective electroreduction of NO2- to NH3. Such Co@NC attains a large NH3 yield of 922.7 µmol h-1 cm-2 and a high Faradaic efficiency of 95.4% under alkaline conditions. Furthermore, it shows remarkable electrochemical stability during cyclic electrolysis.
RESUMEN
Electrochemical nitrate (NO3-) reduction is a potential approach to produce high-value ammonia (NH3) while removing NO3- pollution, but it requires electrocatalysts with high efficiency and selectivity. Herein, we report the development of Fe3O4 nanoparticles decorated TiO2 nanoribbon array on titanium plate (Fe3O4@TiO2/TP) as an efficient electrocatalyst for NO3--to-NH3 conversion. When operated in 0.1 M phosphate-buffered saline and 0.1 M NO3-, such Fe3O4@TiO2/TP achieves a prominent NH3 yield of 12394.3 µg h-1 cm-2 and a high Faradaic efficiency of 88.4%. In addition, it exhibits excellent stability during long-time electrolysis.
Asunto(s)
Nanopartículas , Nanotubos de Carbono , Nitratos , AmoníacoRESUMEN
Electrochemical nitrite (NO2-) reduction is recognized as a promising strategy for synthesizing valuable ammonia (NH3) and degrading NO2- pollutants in wastewater. The six-electron process for the NO2- reduction reaction is complex and necessitates a highly selective and stable electrocatalyst for efficient conversion of NO2- to NH3. Herein, a FeP nanoparticle-decorated TiO2 nanoribbon array on a titanium plate (FeP@TiO2/TP) is proposed as an efficient catalyst for NH3 production under ambient conditions. In 0.1 M NaOH with 0.1 M NO2-, such a FeP@TiO2/TP affords a large NH3 yield of 346.6 µmol h-1 cm-2 and a high Faradaic efficiency of 97.1%. Additionally, it demonstrates excellent stability and durability during long-term cycling tests and electrolysis experiments.
RESUMEN
Seawater electrolysis driven by renewable electricity is deemed a promising and sustainable strategy for green hydrogen production, but it is still formidably challenging. Here, we report an iron-doped NiS nanosheet array on Ni foam (Fe-NiS/NF) as a high-performance and stable seawater splitting electrocatalyst. Such Fe-NiS/NF catalyst needs overpotentials of only 420 and 270 mV at 1000 mA cm-2 for the oxygen evolution reaction and hydrogen evolution reaction in alkaline seawater, respectively. Furthermore, its two-electrode electrolyzer needs a cell voltage of 1.88 V for 1000 mA cm-2 with 50 h of long-term electrochemical durability in alkaline seawater. Additionally, in situ electrochemical Raman and infrared spectroscopy were employed to detect the reconstitution process of NiOOH and the generation of oxygen intermediates under reaction conditions.