Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 179(5): 1057-1067.e14, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730849

RESUMEN

The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.


Asunto(s)
Evolución Biológica , Embryophyta/genética , Genoma de Planta , Streptophyta/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Dominios Proteicos , Streptophyta/clasificación , Simbiosis/genética , Sintenía/genética
2.
Br J Cancer ; 130(11): 1819-1827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594370

RESUMEN

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.


Asunto(s)
Resistencia a Antineoplásicos , Amplificación de Genes , Metotrexato , Tetrahidrofolato Deshidrogenasa , Humanos , Metotrexato/farmacología , Resistencia a Antineoplásicos/genética , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Antimetabolitos Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica/métodos
3.
Biochem Biophys Res Commun ; 709: 149821, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38537597

RESUMEN

At the end of 2019, an unprecedented outbreak of novel coronavirus pneumonia ravaged the global landscape, inflicting profound harm upon society. Following numerous cycles of transmission, we find ourselves in an epoch where the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coexists alongside influenza viruses (Flu A). Swift and accurate diagnosis of SARS-CoV-2 and Flu A is imperative to stem the spread of these maladies and administer appropriate treatment. Presently, colloidal gold-based lateral flow immunoassays (Au-LFIAs) constructed through electrostatic adsorption are beset by challenges such as diminished sensitivity and feeble binding stability. In this context, we propose the adoption of black polylevodopa nanoparticles (PLDA NPs) featuring abundant carboxyl groups as labeling nanomaterials in LFIA to bolster the stability and sensitivity of SARS-CoV-2 antigens and influenza A virus identifications. The engineered PLDA-LFIAs exhibit the capacity to detect SARS-CoV-2 and Flu A within 30 min, boasting a detection threshold of 5 pg/ml for the SARS-CoV-2 antigen and 0.1 ng/ml for the Flu A H1N1 antigen, thereby underscoring their heightened sensitivity relative to Au-LFIAs. These PLDA-LFIAs hold promise for the early detection of SARS-CoV-2 and Flu A, underscoring the potential of PLDA NPs as a discerning labeling probe to heighten the sensitivity of LFIA across diverse applications.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Inmunoensayo/métodos , Cromatografía de Afinidad , Sensibilidad y Especificidad
4.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594616

RESUMEN

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Asunto(s)
Microbiota , Verticillium , Verticillium/fisiología , Gossypium/genética , Gossypium/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Semillas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
5.
J Org Chem ; 89(4): 2440-2447, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38306296

RESUMEN

Aromatic C-H oxygenation is important in both industrial production and organic synthesis. Here we report a metal-free approach for phenol oxygenation with water as the oxygen source using oxoammonium salts as the renewable oxidant. Employing this protocol, various alkyl-substituted phenols were converted into benzoquinones in yields of 59-98%. On the basis of 18O-labeling and kinetic studies, the hydroxy-oxoammonium adduct was proposed to attack the aromatic ring similarly to electrophilic aromatic substitution. We suppose that the findings described here not only provide an efficient and highly selective protocol for aromatic C-H oxygenation but also may encourage further developments of possible transition-metal-free catalytic methods.

6.
J Opt Soc Am A Opt Image Sci Vis ; 41(6): 988-999, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856406

RESUMEN

We propose a model-driven projected algebraic reconstruction technique (PART)-network (PART-Net) that leverages the advantages of the traditional model-based method and the neural network to improve the imaging quality of diffuse fluorescence tomography. In this algorithm, nonnegative prior information is incorporated into the ART iteration process to better guide the optimization process, and thereby improve imaging quality. On this basis, PART in conjunction with a residual convolutional neural network is further proposed to obtain high-fidelity image reconstruction. The numerical simulation results demonstrate that the PART-Net algorithm effectively improves noise robustness and reconstruction accuracy by at least 1-2 times and exhibits superiority in spatial resolution and quantification, especially for a small-sized target (r=2m m), compared with the traditional ART algorithm. Furthermore, the phantom and in vivo experiments verify the effectiveness of the PART-Net, suggesting strong generalization capability and a great potential for practical applications.

7.
Nano Lett ; 23(19): 9133-9142, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37767907

RESUMEN

Immunotherapy has emerged as a triumph in the treatment of malignant cancers. Nevertheless, current immunotherapeutics are insufficient in addressing tumors characterized by tumor cells' inadequate antigenicity and the tumor microenvironment's low immunogenicity (TME). Herein, we developed a novel multifunctional nanoassembly termed FMMC through the self-assembly of indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor 1-methyl-tryptophan prodrug (FM), Ce6, and ionic manganese (Mn2+) via noncovalent interactions. The laser-ignited FMMC treatment could induce effective immunogenic cell death and activate the STING/MHC-I signaling pathway, thus deeply sculpting the tumor-intrinsic antigenicity to achieve dendritic cell (DC)-dependent and -independent T cell responses against tumors. Meanwhile, by inhibiting IDO-1, FMMC could lead to immunosuppressive TME reversion to an immunoactivated one. FMMC-based phototherapy led to the up-regulation of programmed death-ligand 1 (PD-L1), enhancing the sensitivity of tumors to anti-PD-1 therapy. Furthermore, the incorporation of Mn2+ into FMMC resulted in an augmented longitudinal relaxivity and enhanced the MRI for monitoring the growth of primary tumors and lung metastases. Collectively, the superior reprogramming performance of immunosuppressive tumor cells and TME, combined with excellent anticancer efficacy and MRI capability, made FMMC a promising immune nanosculptor for cancer theranostics.


Asunto(s)
Inmunoterapia , Fototerapia , Linfocitos T , Transducción de Señal , Células Dendríticas , Microambiente Tumoral , Línea Celular Tumoral
8.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474562

RESUMEN

Regulator of ribosome synthesis 1 (RRS1), a crucial regulatory factor in ribosome biogenesis, exerts a remarkable impact on the progression of breast cancer (BC). However, the exact mechanisms and pathways have not yet been fully elucidated. To investigate the impact of RRS1 on BC growth and metastasis, along with its underlying mechanisms. We discovered that RRS1 is overexpressed in BC tissues and cell lines. This study aims to regulate the level of RRS1 through lentiviral transfection technology to explore its potential function in BC cells. Knockdown of RRS1 resulted in the inhibition of cell proliferation, invasion, and migration, whereas overexpression had the opposite effects. We firstly identified the interaction between RRS1 and Glucose-Regulated Protein 78 (GRP78) using Co-immunoprecipitation (Co-IP) combined with mass spectrometry analysis, providing evidences of co-localization and positive regulation between RRS1 and GRP78. We observed that RRS1 inhibited the degradation of GRP78 through the ubiquitin-proteasome pathway, resulting in the stabilization of GRP78. In addition, our findings suggested that RRS1 promoted BC progression by activating the GRP78-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In conclusion, this newly discovered RRS1/GRP78 signaling axis provides a molecular and theoretical basis for further exploring the mechanisms of breast cancer invasion and metastasis.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Chaperón BiP del Retículo Endoplásmico , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ribosomas/metabolismo , Proteínas de Unión al ARN
9.
BMC Oral Health ; 24(1): 180, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311735

RESUMEN

BACKGROUND: Retention of doctors is a global challenge and doctors working in different departments may face different problems. The study aimed to explore the turnover behavior and intention and correlated factors among Chinese dentists and medical doctors in other clinical fields. METHODS: A cross-sectional study was conducted online in 5 regions of China from March 12th to April 12th, 2020. The questionnaire included 3 parts, socio-demographic characteristics, turnover behavior and intention, and concerns about work-related factors. Chi-square test and/or Wilcoxon Mann-Whitney test were applied for comparison, and binary logistic regression was used for finding the factors. RESULTS: A total of 2428 eligible questionnaire were received, comprising 1954 responses from dentists and 474 from medical doctors. Rates of turnover behavior among dentists and medical doctors were 2.87% and 6.96%, respectively. Similarly, rates of turnover intention were 51.79% among dentists and 71.20% among medical doctors. Educational level was negatively correlated with turnover behavior of both medical doctors and dentists, and concern about salary was a unique negatively correlated factor for dentists. Age was negatively correlated with turnover intention in both medical doctors and dentists. Conversely, concerns about workload and doctor-patient relationship were positively correlated with turnover intention in both groups. Concern about salary was the distinct correlated factor of medical doctors' turnover intention, while gender and annual household income were correlated with turnover intention among dentists. CONCLUSIONS: Low turnover rate but high turnover intention rate was the current status of Chinese doctors' employment. Turnover behavior and intention were more optimistic among dentists than medical doctors. Factors related to turnover behavior and turnover intention were not identical among dentists and medical doctors. Therefore, personalized retention measures were necessary for dentists and medical doctors.


Asunto(s)
Intención , Relaciones Médico-Paciente , Humanos , Estudios Transversales , Satisfacción en el Trabajo , China , Odontólogos , Encuestas y Cuestionarios
10.
J Proteome Res ; 22(11): 3570-3579, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37831546

RESUMEN

Identification of unique and specific biomarkers to better detect and quantify senescent cells remains challenging. By a global proteomic profiling of senescent human skin BJ fibroblasts induced by ionizing radiation (IR), the cellular level of pregnancy zone protein (PZP), a presumable pan-protease inhibitor never been linked to cellular senescence before, was found to be decreased by more than 10-fold, while the level of PZP in the conditioned medium was increased concomitantly. This observation was confirmed in a variety of senescent cells induced by IR or DNA-damaging drugs, indicating that high-level secretion of PZP is a novel senescence-associated secretory phenotype. RT-PCR examination verified that the transcription of the PZP gene is enhanced in various cells at senescence or upregulated following DNA damage treatment in a p53-independent manner. Moreover, pretreatment with late pregnancy serum containing a high level of PZP led to inhibition of doxorubicin-induced senescence in A549 cells, and depletion of PZP in the pregnancy serum could enhance such inhibition. Finally, the addition of immuno-precipitated PZP complexes into tissue culture attenuated the growth of A549 cells and promoted the spontaneous senescence. Therefore, we revealed that high-level secretion of PZP is a novel and unique feature associated with DNA damage-induced senescence, and secreted PZP is a positive regulator of cellular senescence, particularly during the late stage of gestation.


Asunto(s)
Senescencia Celular , Daño del ADN , Proteínas Gestacionales , Humanos , Biomarcadores/metabolismo , Senescencia Celular/genética , Proteómica , Piel/metabolismo , Proteínas Gestacionales/metabolismo , Fibroblastos , Células A549
11.
Glia ; 71(9): 2210-2233, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37226895

RESUMEN

Oligodendrocyte precursor cells (OPCs) generate oligodendrocytes, a process that may be tuned by neuronal activity, possibly via synaptic connections to OPCs. However, a developmental role of synaptic signaling to OPCs has so far not been shown unequivocally. To address this question, we comparatively analyzed functional and molecular characteristics of highly proliferative and migratory OPCs in the embryonic brain. Embryonic OPCs in mice (E18.5) shared the expression of voltage-gated ion channels and their dendritic morphology with postnatal OPCs, but almost completely lacked functional synaptic currents. Transcriptomic profiling of PDGFRα+ OPCs revealed a limited abundance of genes coding for postsynaptic signaling and synaptogenic cell adhesion molecules in the embryonic versus the postnatal period. RNA sequencing of single OPCs showed that embryonic synapse-lacking OPCs are found in clusters distinct from postnatal OPCs and with similarities to early progenitors. Furthermore, single-cell transcriptomics demonstrated that synaptic genes are transiently expressed only by postnatal OPCs until they start to differentiate. Taken together, our results indicate that embryonic OPCs represent a unique developmental stage biologically resembling postnatal OPCs but without synaptic input and a transcriptional signature in the continuum between OPCs and neural precursors.


Asunto(s)
Células Precursoras de Oligodendrocitos , Ratones , Animales , Células Precursoras de Oligodendrocitos/metabolismo , Ratones Transgénicos , Oligodendroglía/metabolismo , Neuronas/fisiología , Neurogénesis/fisiología , Diferenciación Celular/fisiología
12.
BMC Genomics ; 24(1): 430, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528394

RESUMEN

The tumor immune microenvironment (TIME) of colon cancer (CC) has been associated with extensive immune cell infiltration (IMI). Increasing evidence demonstrated that plasma cells (PC) have an extremely important role in advance of antitumor immunity. Nonetheless, there is a lack of comprehensive analyses of PC infiltration in clinical prognosis and immunotherapy in CC. This study systematically addressed the gene expression model and clinical information of CC patients. Clinical samples were obtained from the TCGA (The Cancer Genome Atlas) databases. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), GSVA, and the MAlignant Tumors using Expression data (ESTIMATE) algorithm were employed to research the potential mechanism and pathways. Immunophenoscore (IPS) was obtained to evaluate the immunotherapeutic significance of risk score. Half maximal inhibitory concentration (IC50) of chemotherapeutic medicine was predicted by employing the pRRophetic algorithm. A total of 513 CC samples (including 472 tumor samples and 41 normal samples) were collected from the TCGA-GDC database. Significant black modules and 313 candidate genes were considered PC-related genes by accessing WGCNA. Five pivotal genes were established through multiple analyses, which revealed excellent prognostic. The underlying correlation between risk score with tumor mutation burden (TMB) was further explored. In addition, the risk score was obviously correlated with various tumor immune microenvironment (TIME). Also, risk CC samples showed various signaling pathways activity and different pivotal sensitivities to administering chemotherapy. Finally, the biological roles of the CD177 gene were uncovered in CC.


Asunto(s)
Neoplasias del Colon , Medicina , Humanos , Células Plasmáticas , Neoplasias del Colon/genética , Neoplasias del Colon/terapia , Inmunoterapia , Algoritmos , Pronóstico , Microambiente Tumoral/genética
13.
Anal Chem ; 95(27): 10390-10397, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37358224

RESUMEN

Oxidation and protein phosphorylation are critical mechanisms involved in regulating various cellular activities. Increasing research has suggested that oxidative stress could affect the activities of specific kinases or phosphatases, leading to alterations in the phosphorylation status of certain proteins. Ultimately, these alterations can affect cellular signaling pathways and gene expression patterns. However, the relationship between oxidation and protein phosphorylation remains complex and not yet fully understood. Therefore, the development of effective sensors capable of detecting both oxidation and protein phosphorylation simultaneously presents an ongoing challenge. To address this need, we introduce a proof-of-concept nanochannel device that is dual-responsive to both H2O2 and phosphorylated peptide (PP). Specifically, we design a peptide GGGCEG(GPGGA)4CEGRRRR, which contains an H2O2-sensitive unit CEG, an elastic peptide fragment (GPGGA)4, and a phosphorylation site recognition fragment RRRR. When the peptides are immobilized on the inner walls of conical nanochannels in a polyethylene terephthalate membrane, this peptide-modified nanochannel device exhibits a sensitive response to both H2O2 and PPs. The peptide chains undergo a random coil-to-α-helix transition in response to H2O2, which leads to a close-to-open transition of the nanochannel, accompanied with a remarkable increase in the transmembrane ionic current. In contrast, binding of the peptides with PPs shields the positive charge of the RRRR fragments, causing a decrease of the transmembrane ionic current. These unique features enable the sensitive detection of reactive oxygen species released by 3T3-L1 cells stimulated by platelet-derived growth factor (PDGF) as well as PDGF-induced change in the PP level. Real-time kinase activity monitoring further confirms the device's potential utility for kinase inhibitor screening.


Asunto(s)
Peróxido de Hidrógeno , Péptidos , Peróxido de Hidrógeno/farmacología , Péptidos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Fosforilación , Estrés Oxidativo
14.
Plant Biotechnol J ; 21(2): 283-301, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36208018

RESUMEN

Light is known to regulate anthocyanin pigment biosynthesis in plants on several levels, but the significance of protein phosphorylation in light-induced anthocyanin accumulation needs further investigation. In this study, we investigated the dynamics of the apple fruit phosphoproteome in response to light, using high-performance liquid chromatography-tandem mass spectrometry analysis. Among the differentially phosphorylated proteins, the bZIP (basic leucine zipper) transcription factor, HY5, which has been identified as an anthocyanin regulator, was rapidly activated by light treatment of the fruit. We hypothesized that phosphorylated MdHY5 may play a role in light-induced anthocyanin accumulation of apple fruit. Protein interaction and phosphorylation assays showed that mitogen-activated protein kinase MdMPK6 directly interacted with, and activated, MdHY5 via phosphorylation under light conditions, thereby increasing its stability. Consistent with this finding, the suppression of the mitogen-activated protein kinase genes MdMPK6 or MdHY5 resulted in an inhibition of anthocyanin accumulation, and further showed that light-induced anthocyanin accumulation is dependent on MdMPK6 kinase activity, and is required for maximum MdHY5 activity. Under light conditions, active MdMPK6 phosphorylated MdHY5 leading to accumulation of phospho-MdHY5, which enhanced the binding of MdHY5 to its target anthocyanin related genes in fruit. Our findings reveal an MdMPK6-MdHY5 phosphorylation pathway in light-induced anthocyanin accumulation, providing new insights into the regulation of light-induced anthocyanin biosynthesis in apple fruit at both the transcriptional and post-translational levels.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
15.
Plant Physiol ; 189(1): 66-83, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35148400

RESUMEN

Anthocyanin production in apple (Malus domestica) fruit and their consequent coloration can be induced by high-light treatment. The hormone ethylene is also essential for this coloration, but the regulatory relationships that link ethylene and light with anthocyanin-associated coloration are not well defined. In this study, we observed that high-light treatment of apple fruit increased anthocyanin accumulation more than moderate-light treatment did and was the main contributor of induced ethylene production and activation of anthocyanin biosynthesis. A transcriptome study of light-treated apple fruit suggested that a long noncoding RNA (lncRNA), MdLNC610, the corresponding gene of which is physically located downstream from the 1-aminocyclopropane-1-carboxylate oxygenase (ACO) ethylene biosynthesis gene MdACO1, likely affects anthocyanin biosynthesis under high-light treatment. Expression and promoter ß-glucuronidase reporter analyses further showed that MdLNC610 upregulates expression of MdACO1 and so likely participates in high-light-induced ethylene biosynthesis. Overexpression of MdACO1 and MdLNC610 in apple fruit and calli indicated that a major increase in MdLNC610 expression activates MdACO1 expression, thereby causing an increase in ethylene production and anthocyanin levels. These results suggest that MdLNC610 participates in the regulation of high-light-induced anthocyanin production by functioning as a positive regulator to promote MdACO1 expression and ethylene biosynthesis. Our study provides insights into the relationship between mRNA and lncRNA networks in the ethylene biosynthetic pathway and anthocyanin accumulation in apple fruit.


Asunto(s)
Malus , ARN Largo no Codificante , Antocianinas/metabolismo , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
16.
Opt Lett ; 48(15): 4013-4016, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527106

RESUMEN

Directionally duplexed metalenses manipulated by the geometric phase of a silicon nano-bar are theoretically designed to generate multifunctional structured light. It is numerically demonstrated that incident light with different linear and circular polarization states, along forward and backward propagation directions, can be differentially converted into multiple focusing structured beams of arbitrary topological charges, either of vector light with azimuthally variant polarizations or of vortex light with helical phases. Due to the all-silicon and nonresonant metastructural design, the resultant high working efficiencies of our proposed metalens are promising for applications such as optical communication, nanoparticle manipulation, and other direction-duplexed multifunctional optical meta-devices.

17.
Crit Rev Biotechnol ; : 1-18, 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105513

RESUMEN

Fungal α/ß-glucans have significant importance in cellular functions including cell wall structure, host-pathogen interactions and energy storage, and wide application in high-profile fields, including food, nutrition, and pharmaceuticals. Fungal species and their growth/developmental stages result in a diversity of glucan contents, structures and bioactivities. Substantial progresses have been made to elucidate the fine structures and functions, and reveal the potential molecular synthesis pathway of fungal α/ß-glucans. Herein, we review the current knowledge about the biosynthetic machineries, including: precursor UDP-glucose synthesis, initiation, elongation/termination and remodeling of α/ß-glucan chains, and molecular regulation to maximally produce glucans in edible fungi. This review would provide future perspectives to biosynthesize the targeted glucans and reveal the catalytic mechanism of enzymes associated with glucan synthesis, including: UDP-glucose pyrophosphate phosphorylases (UGP), glucan synthases, and glucanosyltransferases in edible fungi.

18.
Cell Commun Signal ; 21(1): 29, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732831

RESUMEN

OBJECTIVES: The inflammatory cascade and cell death post-myocardial ischemia reperfusion (MI/R) are very complex. Despite the understanding that macrophage inflammation has a pivotal role in the pathophysiology of MI/R, the contribution of macrophage inflammatory signals in tailoring the function of vascular endothelium remains unknown. MATERIALS AND METHODS: In the present study, we analyzed the effects of NEDD4 on the NLRP3 inflammasome activation-mediated pyroptosis in vitro after an acute pro-inflammatory stimulus and in vivo in a MI/R mouse model. TTC and Evan's blue dye, Thioflavin S, immunohistochemistry staining, and ELISA were performed in wild-type and NEDD4 deficiency mice. THP-1 cells were transfected with si-NEDD4 or si-SF3A2. HEK293T cells were transfected with NEDD4 or SF3A2 overexpression plasmid. ELISA analyzed the inflammatory cytokines in the cell supernatant. The levels of NEDD4, SF3A2, and NLRP3/GSDMD pathway were determined by Western blot. Protein interactions were evaluated by immunoprecipitation. The protein colocalization in cells was monitored using a fluorescence microscope. RESULTS: NEDD4 inhibited NLRP3 inflammasome activation and pyroptosis in THP-1 cells treated with lipopolysaccharide (LPS) and nigericin (Nig). Mechanistically, NEDD4 maintained the stability of NLRP3 through direct interaction with the SF3A2, whereas the latter association with NLRP3 indirectly interacted with NEDD4 promoting proteasomal degradation of NLRP3. Deletion of NLRP3 expression further inhibited the caspase cascade to induce pyroptosis. Interestingly, inhibiting NLRP3 inflammasome activation in THP-1 cells could prevent cardiac microvascular endothelial cells (CMECs) injury. In addition, NEDD4 deficiency decreased animal survival and increased myocardial infarct size, no-reflow area, and promoted macrophages infiltration post-MI/R. CONCLUSIONS: NEDD4 could be a potential therapeutic target in microvascular injury following myocardial reperfusion. Video Abstract.


Asunto(s)
Daño por Reperfusión Miocárdica , Piroptosis , Ratones , Animales , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Células Endoteliales/metabolismo , Células HEK293 , Macrófagos/metabolismo , Factores de Empalme de ARN/metabolismo
19.
Helicobacter ; 28(4): e12970, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37160689

RESUMEN

BACKGROUND: Potassium-competitive acid blockers (P-CAB) are recommended for the treatment of Helicobacter pylori infections, but dual therapy of P-CAB with amoxicillin has been poorly studied. The current study compared the efficacy, adverse reactions, compliance, and effects on gut microbiota of 14-day vonoprazan-amoxicillin (VA) dual therapy with esomeprazole, bismuth potassium citrate, amoxicillin, and metronidazole (EBAM) quadruple therapy in treatment-naive patients with H. pylori. MATERIALS AND METHODS: This was a multicenter, open-label, randomized, and controlled, non-inferiority study. Patients (n = 194) enrolled from six centers were randomly divided into either the VA or EBAM group. H. pylori eradication was determined using 13 C urea breath tests (UBT) 4-6 weeks post-treatment. Fecal samples were collected, and gut microbial populations were analyzed by 16S rDNA and metagenomic sequencing technology. RESULTS: Eradication rates of H. pylori in the VA and EBAM groups were 88.7% and 91.8%, respectively, according to intention-to-treat (ITT) analysis; 95.6% and 96.7% with per-protocol (PP) analysis; and 94.5% and 96.7% with modified ITT (mITT) analysis (all p > 0.05). The incidence of adverse reactions in the VA group was significantly lower compared to the EBAM group, and compliance within both groups was good. There was no difference in α-diversity or microbial composition in the VA and EBAM groups at one-month post-treatment compared to baseline, except for a markedly reduced abundance of Bacteroides in the EBAM group. CONCLUSION: VA therapy achieved excellent eradication rates with low adverse reactions, good compliance, and little impact on gut microbiota. VA therapy should be recommended as a first-line treatment against H. pylori.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Amoxicilina/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Antibacterianos , Quimioterapia Combinada , Bismuto/uso terapéutico , Resultado del Tratamiento , Inhibidores de la Bomba de Protones/uso terapéutico , Claritromicina/uso terapéutico
20.
Rapid Commun Mass Spectrom ; 37(1): e9403, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36184262

RESUMEN

RATIONALE: Fritillaria cirrhosae bulbus (BFC), a typical traditional Chinese medicine with multiple botanical sources, has been used for relieving cough and reducing sputum. Studies have shown that there were obvious differences in the chemical compositions and clinical efficacy of different sources of BFC. How to characterise BFC from botanical sources accurately and quickly is vital for drug quality evaluation and clinical applications. METHODS: In the present study, an integrated strategy of plant metabolomics combined with the target network pharmacology was developed to characterise BFC. Plant metabolomics analysis was performed to screen out the chemical markers of six species of BFC. Then, target network pharmacology was applied to explore the relationship between chemical markers and related diseases. Finally, potential Q-markers for species characterization were selected by combined analysis of plant metabolomics and the target network pharmacology. RESULTS: A total of 67 Fritillaria alkaloid compounds were identified. Six species showed clear characterization by multivariate statistical analysis, resulting in 12 chemical markers. Meanwhile, a total of nine components related to asthma were screened out based on the target network pharmacology. Taking content difference and pharmacological activity into consideration, nine constituents were selected as potential Q-markers. CONCLUSION: The method developed provided not only a standard protocol for characterising different species of BFC directly, but also an effective approach for multisource medicines discrimination.


Asunto(s)
Medicamentos Herbarios Chinos , Fritillaria , Medicamentos Herbarios Chinos/química , Farmacología en Red , Fritillaria/química , Medicina Tradicional China , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA