Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(37): 14918-14925, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39197157

RESUMEN

Convenient and accurate quantification of disease-relevant multitargets is essential for community disease screening. However, in the field of photoelectrochemical (PEC) sensors for multisubstance detection, research on the continuous detection of multiple targets using a polarity-switching mode is scarce. In this study, a multiplexed PEC bioassay was developed based on a target-triggered "anodic-cathodic-anodic" multiple-polarity-switchable mode. Employing miRNA-21 and miRNA-141 as model analytes, the photosensitive material combinations of Cu2O/gold nanoparticles (AuNPs)/TiO2 and CdS/AuNPs/TiO2 were successively formed through the specific binding of different whisker branches of Whisker-DNA to Cu2O-H1 and the CdS-tripod DNA ring, respectively. This process reverses the photocurrent polarity from anodic to cathodic and then back to anodic upon detecting different targets, resulting in the high-sensitivity quantification of various biological targets with reduced interference. To enhance the device's utility and affordability in community disease screening, integrating a capacitor and a multimeter-smartphone connection simplifies the assembly and reduces costs. In developing the PEC sensor, the device demonstrated linear detection ranges for miRNA-21 and miRNA-141 from 0.01 fM to 10 nM. Detection limits for miRNA-21 and miRNA-141 were established at 3.2 and 4.3 aM, respectively. The innovative target-triggered multiple-polarity-switchable mode offers adaptability for other multitarget detections by simply modifying the structure of the whisker branches and the combination of photosensitive materials.


Asunto(s)
Cobre , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , MicroARNs , Titanio , MicroARNs/análisis , Oro/química , Nanopartículas del Metal/química , Titanio/química , Cobre/química , Humanos , Compuestos de Cadmio/química , Sulfuros/química , Procesos Fotoquímicos , Límite de Detección , ADN/química , ADN/análisis , Técnicas Biosensibles
2.
Phys Rev Lett ; 125(17): 173201, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33156666

RESUMEN

Laser-induced rotational wave packets of H_{2} and D_{2} molecules were experimentally measured in real time by using two sequential 25-fs laser pulses and a reaction microscope. By measuring the time-dependent yields of the above-threshold dissociation and the enhanced ionization of the molecule, we observed a few-femtosecond time delay between the two dissociation channels for both H_{2} and D_{2}. The delay was interpreted and reproduced by a classical model that considers enhanced ionization and thus additional interaction within the laser pulse. We demonstrate that by accurately measuring the phase of the rotational wave packet in hydrogen molecules we can resolve dissociation dynamics which is occurring within a fraction of a molecular rotation. Such a rotational clock is a general concept applicable to sequential fragmentation processes in other molecules.

3.
Phys Rev Lett ; 113(10): 103001, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238353

RESUMEN

We perform a fully differential measurement on strong-field double ionization of Xe by 25 fs, 790 nm laser pulses in intensity region (0.4-3)×10(14) W/cm2. We observe that the two-dimensional correlation momentum spectra along the laser polarization direction show a nonstructured distribution for double ionization of Xe when decreasing the laser intensity from 3×10(14) to 4×10(13) W/cm2. The electron correlation behavior is remarkably different with the low-Z rare gases, i.e., He, Ne, and Ar. We find that the electron energy cutoffs increase from 2.9Up to 7.8Up when decreasing the laser intensities from the sequential double ionization to the nonsequential double ionization regime. The experimental observation indicates that multiple rescatterings play an important role for the generation of high energy photoelectrons. We have further studied the shielding effect on the strong-field double ionization of high-Z atoms.

4.
Biosens Bioelectron ; 266: 116736, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39226751

RESUMEN

In photoelectrochemical (PEC) sensors, traditional detection modes such as "signal-on", "signal-off", and "polarity-switchable" limit target signals to a single polarity range, necessitating novel design strategies to enhance the operational scope. To overcome this limitation, we propose, for the first time, a "polarity-transcendent" design concept that enables a continuous response across the polarity spectrum, significantly broadening the sensor's concentration detection range. This concept is exemplified in our new "background-enhanced signal-off polarity-switchable" (BESOPS) mode, where the model analyte let-7a activates a cascade shearing reaction of a DNAzyme walker in conjunction with CRISPR/Cas12a, quantitatively peeling off Cu2O-H2 strands at the Cu2O/TiO2 electrode interface to expose the TiO2 surface. This exposure generates an anodic photocurrent at the expense of the cathodic photocurrent from Cu2O/TiO2, facilitating a seamless transition of the target signal from cathodic to anodic. Through systematic experiments and comparative analyses, the BESOPS sensor demonstrates highly sensitive and precise quantification of let-7a, with a detection limit of 2.5 aM and a broad operating range of 10 aM to 10 nM. Its performance exceeds most reported sensor platforms, highlighting the significant potential of our polarity-transcendent design in expanding the operational range of PEC sensors. This innovative approach paves the way for developing next-generation PEC sensors with enhanced applicability and heightened sensitivity in various critical fields.


Asunto(s)
Técnicas Biosensibles , Cobre , Técnicas Electroquímicas , Límite de Detección , Titanio , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Cobre/química , Titanio/química , MicroARNs/análisis , Humanos , Diseño de Equipo , Sistemas CRISPR-Cas , Electrodos
5.
ACS Appl Mater Interfaces ; 14(14): 16269-16278, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35348334

RESUMEN

The localized surface plasmon resonance (LSPR) from noble metal nanomaterials (NMs) is a promising solution to approach the theoretical efficiency for photovoltaic devices. However, the plasmon resonance of metal NMs with particular shapes and sizes can only be excited within narrow spectral ranges, which can hardly cover the broad-band solar spectrum. To address this issue, in this article, Ag NMs with irregular shapes and sizes are synthesized and embedded in the electron transport layer of perovskite solar cells. With the outstanding conductivity of Ag NMs, the series resistance and charge transfer resistance of the devices are dramatically decreased. The Ag NMs with larger size could enhance the light-trapping of the devices owing to the far-field light scattering effect. The near-field enhancement by LSPR of Ag NMs with a small size mainly contributes to the promotion of carrier transport and extraction. As a result, broad-band improvements in photovoltaic performance are achieved due to the significant enhancement of light absorption and electrical features. The highest power conversion efficiency of the perovskite solar cells increases from 19.52 to 22.42% after the incorporation of Ag NMs.

6.
Sci Rep ; 5: 8519, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25687446

RESUMEN

Photoelectrons ionized from atoms and molecules in a strong laser field are either emitted directly or rescattered by the nucleus, both of which can serve as efficiently useful tools for molecular orbital imaging. We measure the photoelectron angular distributions of molecules (N2, O2 and CO2) ionized by infrared laser pulses (1320 nm, 0.2 ~ 1 × 10(14) W/cm(2)) from multiphoton to tunneling regime and observe an enhancement of interference stripes in the tunneling regime. Using a semiclassical rescattering model with implementing the interference effect, we show that the enhancement arises from the sub-laser-cycle holographic interference of the contributions of the back-rescattering and the non-rescattering electron trajectory. It is shown that the low-energy backscattering photoelectron interference patterns have encoded the structural information of the molecular initial orbitals and attosecond time-resolved dynamics of photoelectron, opening new paths in high-resolution imaging of sub-Ångström and sub-femtosecond structural dynamics in molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA