Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(27): e2311124, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38258393

RESUMEN

The electrochemical nitrogen oxidation reaction (NOR) holds significant potential to revolutionize the traditional nitrate synthesis processes. However, the progression in NOR has been notably stymied due to the sluggish kinetics of initial N2 adsorption and activation processes. Herein, the research embarks on the development of a CeO2-Co3O4 heterostructure, strategically engineered to facilitate the electron transfer from CeO2 to Co3O4. This orchestrated transfer operates to amplify the d-band center of the Co active sites, thereby enhancing N2 adsorption and activation dynamics by strengthening the Co─N bond and diminishing the resilience of the N≡N bond. The synthesized CeO2-Co3O4 manifests promising prospects, showcasing a significant HNO3 yield of 37.96 µg h-1 mgcat -1 and an elevated Faradaic efficiency (FE) of 29.30% in a 0.1 m Na2SO4 solution at 1.81 V versus RHE. Further substantiating these findings, an array of in situ methodologies coupled with DFT calculations vividly illustrate the augmented adsorption and activation of N2 on the surface of CeO2-Co3O4 heterostructure, resulting in a substantial reduction in the energy barrier pertinent to the rate-determining step within the NOR pathway. This research carves a promising pathway to amplify N2 adsorption throughout the electrochemical NOR operations and delineates a blueprint for crafting highly efficient NOR electrocatalysts.

2.
Inorg Chem ; 63(17): 7886-7895, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38621298

RESUMEN

In the quest for proficient electrocatalysts for ammonia's electrocatalytic nitrogen reduction, cobalt oxides, endowed with a rich d-electron reservoir, have emerged as frontrunners. Despite the previously evidenced prowess of CoO in this realm, its ammonia yield witnesses a pronounced decline as the reaction unfolds, a phenomenon linked to the electron attrition from its Co2+ active sites during electrocatalytic nitrogen reduction reaction (ENRR). To counteract this vulnerability, we harnessed electron-laden phosphorus (P) elements as dopants, aiming to recalibrate the electronic equilibrium of the pivotal Co active site, thereby bolstering both its catalytic performance and stability. Our empirical endeavors showcased the doped P-CoO's superior credentials: it delivered an impressive ammonia yield of 49.6 and, notably, a Faradaic efficiency (FE) of 9.6% at -0.2 V versus RHE, markedly eclipsing its undoped counterpart. Probing deeper, a suite of ex-situ techniques, complemented by rigorous theoretical evaluations, was deployed. This dual-pronged analysis unequivocally revealed CoO's propensity for an electron-driven valence metamorphosis to Co3+ post-ENRR. In stark contrast, P-CoO, fortified by P doping, exhibits a discernibly augmented ammonia yield. Crucially, P's intrinsic ability to staunch electron leakage from the active locus during ENRR ensures the preservation of the valence state, culminating in enhanced catalytic dynamism and fortitude. This investigation not only illuminates the intricacies of active site electronic modulation in ENRR but also charts a navigational beacon for further enhancements in this domain.

3.
Environ Res ; 250: 118462, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367835

RESUMEN

Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.


Asunto(s)
Clima Desértico , Microbiota , Microbiología del Suelo , China , Ecosistema , Bacterias/genética , Bacterias/clasificación , Hongos/genética , Hongos/clasificación
4.
J Am Chem Soc ; 145(49): 26699-26710, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38039528

RESUMEN

Transition-metal oxides (TMOs) often struggle with challenges related to low electronic conductivity and unsatisfactory cyclic stability toward cationic intercalation. In this work, we tackle these issues by exploring an innovative strategy: leveraging heightened π-donation to activate the t2g orbital, thereby enhancing both electron/ion conductivity and structural stability of TMOs. We engineered Ni-doped layered manganese dioxide (Ni-MnO2), which is characterized by a distinctive Ni-O-Mn bridging configuration. Remarkably, Ni-MnO2 presents an impressive capacitance of 317 F g-1 and exhibits a robust cyclic stability, maintaining 81.58% of its original capacity even after 20,000 cycles. Mechanism investigations reveal that the incorporation of Ni-O-Mn configurations stimulates a heightened π-donation effect, which is beneficial to the π-type orbital hybridization involving the O 2p and the t2g orbital of Mn, thereby accelerating charge-transfer kinetics and activating the redox capacity of the t2g orbital. Additionally, the charge redistribution from Ni to the t2g orbital of Mn effectively elevates the low-energy orbital level of Mn, thus mitigating the undesirable Jahn-Teller distortion. This results in a subsequent decrease in the electron occupancy of the π*-antibonding orbital, which promotes an overall enhancement in structural stability. Our findings pave the way for an innovative paradigm in the development of fast and stable electrode materials for intercalation energy storage by activating the low orbitals of the TM center from a molecular orbital perspective.

5.
Angew Chem Int Ed Engl ; 62(29): e202303794, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37226852

RESUMEN

Electrocatalytic nitrogen reduction reaction (ENRR) has emerged as a promising approach to synthesizing green ammonia under ambient conditions. Tungsten (W) is one of the most effective ENRR catalysts. In this reaction, the protonation of intermediates is the rate-determining step (RDS). Enhancing the adsorption of intermediates is crucial to increase the protonation of intermediates, which can lead to improved catalytic performance. Herein, we constructed a strong interfacial electric field in WS2 -WO3 to elevate the d-band center of W, thereby strengthening the adsorption of intermediates. Experimental results demonstrated that this approach led to a significantly improved ENRR performance. Specifically, WS2 -WO3 exhibited a high NH3 yield of 62.38 µg h-1 mgcat -1 and a promoted faraday efficiency (FE) of 24.24 %. Furthermore, in situ characterizations and theoretical calculations showed that the strong interfacial electric field in WS2 -WO3 upshifted the d-band center of W towards the Fermi level, leading to enhanced adsorption of -NH2 and -NH intermediates on the catalyst surface. This resulted in a significantly promoted reaction rate of the RDS. Overall, our study offers new insights into the relationship between interfacial electric field and d-band center and provides a promising strategy to enhance the intermediates adsorption during the ENRR process.

6.
New Phytol ; 236(6): 2311-2326, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36114658

RESUMEN

The annual planting area of major inbred rice (Oryza sativa) cultivars reach more than half of the total annual planting area of inbred rice cultivars in China. However, how the major inbred rice cultivars changed during decades of genetic improvement and why they can be prevalently cultivated in China remains unclear. Here, we investigated the underlying genetic changes of major inbred cultivars and the contributions of landraces and introduced cultivars during the improvement by resequencing a collection of 439 rice accessions including major inbred cultivars, landraces, and introduced cultivars. The results showed that landraces were the main genetic contribution sources of major inbred Xian (Indica) cultivars, while introduced cultivars were that of major inbred Geng (Japonica) cultivars. Selection scans and haplotype frequency analysis shed light on the reflections of some well-known genes in rice improvement, and breeders had different preferences for the Xian's and Geng's breeding. Six candidate regions associated with agronomic traits were identified by genome-wide association mapping, five of which were under positive selection in rice improvement. Our study provides a comprehensive insight into the development of major inbred rice cultivars and lays the foundation for genomics-based breeding in rice.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento/métodos , Estudio de Asociación del Genoma Completo , Variación Genética , Genómica , China
7.
Arch Microbiol ; 204(3): 197, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35217917

RESUMEN

Lycium barbarum L. is a well-known traditional geoherb in Ningxia, China. The fruits of L. barbarum contain several dietary constituents, and thus, they exert many beneficial effects on human health. However, a few studies have been conducted on the geoherb L. barbarum and its rhizosphere soil fungal community. In this study, we determined the physicochemical properties and fungal community structure of rhizosphere soil of L. barbarum from three regions of China, namely Ningxia (NX), Qinghai (QH), and Xinjiang (XJ), during three development stages of L. barbarum. Soil pH varied between 7.56 and 8.60 across the three regions, indicating that alkaline soil is conducive to the growth of L. barbarum. The majority of soil properties in NX, an authentic geoherb-producing area, were substantially inferior to those in XJ and QH during all three developmental stages. Total sugar, polysaccharide (LBP), and flavonoid contents were the highest in wolfberry fruits from NX. High-throughput sequencing showed that the abundance of the soil fungal population in NX was higher than that in QH and XJ during the flowering and fruiting stage and summer dormant stage. Moreover, the soil fungal diversity increased with the development of wolfberry. Ascomycota and Mortierellomycota were the predominant phyla in the rhizosphere fungal communities in all samples. Redundancy analysis showed a significant correlation of the soil-available phosphorus and LBP of wolfberry fruits with the fungal community composition. The characteristics of rhizosphere fungal communities determined in the present study provide insights into the mechanism of geoherb formation in NX wolfberry.


Asunto(s)
Lycium , Micobioma , Humanos , Lycium/química , Polisacáridos , Rizosfera , Suelo , Microbiología del Suelo
8.
J Transl Med ; 19(1): 505, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34886858

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor of the central nervous system. Recent studies have reported the crucial functions of Tripartite Motif Containing 24 (TRIM24) in promoting cancer progression of GBM. However, it remains unclear if TRIM24 is an attractive druggable target for therapeutic intervention in GBM. We therefore performed a series of experiments, aiming to verify whether specific TRIM24 inhibition suppresses GBM malignant functions using dTRIM24 and IACS-9571, two novel selective TRIM24 antagonists. Our data showed that TRIM24 inhibitors serve as effective agents for inhibiting cell propagation and invasion of several patient-derived GBM stem cells (GSCs), and these effects are mediated partially through suppression of the TRIM24-SOX2 axis. This study provides novel insight into the TRIM24-based druggable dependencies, important for developing effective therapeutic strategies for brain tumors.


Asunto(s)
Neoplasias Encefálicas , Proteínas Portadoras/antagonistas & inhibidores , Glioblastoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Tumorales Cultivadas
9.
BMC Microbiol ; 21(1): 170, 2021 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34090353

RESUMEN

BACKGROUND: The unique climatic conditions of the Xinjiang region nurture rich melon and fruit resources, the melon and fruit sugar sources provide sufficient nutrients for the survival of yeast, and the diverse habitats accompanied by extreme climatic conditions promote the production of yeast diversity and strain resources. However, the relationship between yeast species and their relationship with environmental factors in the soil of Xinjiang specialty cash crop Hami melon is not clear. Here, we aimed to characterize the diversity, community structure, and relationship between yeast species and environmental factors in Hami melon orchards soils in different regions of Xinjiang, China. RESULTS: Based on Illumina MiSeq high-throughput sequencing analysis of the D1 domain of the LSU rRNA genes, the community richness of yeast in the soil of Northern Xinjiang was higher than in the Southern and Eastern Xinjiang, but the community diversity was significantly lower in the Northern Xinjiang than in the Southern and Eastern Xinjiang. A total of 86 OTUs were classified into 59 genera and 86 species. Most OTUs (90.4%) belonged to the Basidiomycota; only a few (9.6%) belonged to Ascomycota. The most dominant species in the Southern, Eastern and Northern Xinjiang were Filobasidium magnum (17.90%), Solicoccozyma aeria (35.83%) and Filobasidium magnum (75.36%), respectively. Principal coordinates analysis (PCoA) showed that the yeast community composition in the soils of the three regions were obviously different, with the Southern and Eastern Xinjiang having more similar yeast community. Redundancy analysis (RDA) showed that soil factors such as conductivity (CO), total phosphorus (TP) and Total potassium (TK) and climate factors such as average annual precipitation (PRCP), relative humidity (RH) and net solar radiation intensity (SWGNT) were significantly correlated with yeast communities (P < 0.05). CONCLUSION: There are abundant yeast resources in the rhizosphere soil of Hami melon orchard in Xinjiang, and there are obvious differences in the diversity and community structure of yeast in the three regions of Xinjiang. Differences in climatic factors related to precipitation, humidity and solar radiation intensity and soil factors related to conductivity, total phosphorus and total potassium are key factors driving yeast diversity and community structure.


Asunto(s)
Cucurbitaceae/crecimiento & desarrollo , Microbiología del Suelo , Levaduras/aislamiento & purificación , China , Cucurbitaceae/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , Fósforo/análisis , Fósforo/metabolismo , Rizosfera , Suelo/química , Levaduras/clasificación , Levaduras/genética
10.
Amino Acids ; 53(10): 1609-1622, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34524541

RESUMEN

Escherichia coli infections can result in lung injury, which may be closely linked to the induction of interferon secretion. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is one of most important pathways that regulate interferon production. Thus, the present study aimed to dissect whether E. coli infections can regulate interferon production and the underlying mechanisms. For this aim, two lung cell lines, a human bronchial epithelial cell line transformed with Ad12-SV40 2B (BEAS-2b) and a human fetal lung fibroblast (HFL1) cell line, were used. The effects of E. coli infections on interferon production were studied using qRT-PCR, Western blot, and siRNA knockdown assays. E. coli infections remarkably promoted the expression levels of IFN-α, IFN-ß, and ISGs. Major components of the JAK/STAT pathway, including JAK1, STAT1, and STAT2, were demonstrated to be regulated by E. coli infections. Importantly, knockdown of JAK1, STAT1, and STAT2 abolished the induction of IFN-α, IFN-ß, and ISGs by E. coli. Therefore, experiments in the present study demonstrated that E. coli infections remarkably promoted interferon production in lung cells, which was closely regulated by the JAK/STAT signaling pathway. The findings in the present study are useful for further understanding the pathogenesis of E. coli infections in the lung and finding novel therapies to treat E. coli-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda/microbiología , Infecciones por Escherichia coli/metabolismo , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Lesión Pulmonar Aguda/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular , Infecciones por Escherichia coli/genética , Exorribonucleasas/genética , Regulación de la Expresión Génica , Humanos , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Pulmón/citología , Pulmón/microbiología , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Unión al ARN/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Transducción de Señal
12.
Nanotechnology ; 29(28): 285402, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29671406

RESUMEN

Semiconductor phase transitions and plasma noble metal quantum dots (QDs) for visible-light-driven photocatalysts have attracted significant research interest. In this study, novel microwave hydrothermal and photo-reduction methods are proposed to synthesise a visible-light-driven plasma photocatalytic 1T@2H-MoS2/Ag composite. Photoelectrochemical results show that the introduction of the 1T phase and Ag significantly enhances the light response range and charge separation. The 1T phase can act as a co-catalyst to provide a high electron concentration. Ag QDs can effectively improve the light absorption and catalytic effect. The synergistic effect between the 1T@2H-MoS2 microspheres and localised surface plasmon resonance of the Ag QDs can effectively enhance the photocatalytic activity of 1T@2H-MoS2/Ag. The developed 1T@2H-MoS2/Ag composite is superior, not only with respect to a visible-light photocatalytic degradation of conventional dyes, but also in the photocatalytic reduction of Cr(VI). Compared with 2H-MoS2, the catalytic efficiency of 1T@2H-MoS2/Ag for Cr(VI) and MB is increased by 81% and 41%, respectively. This study demonstrates that the introduction of 1T-MoS2 and Ag QDs can significantly enhance the catalytic properties of 2H-MoS2. The microwave and photo-reduction technologies can be employed as green, safe, simple, and rapid methods for the synthesis of noble metal plasma composites.

13.
Sensors (Basel) ; 18(8)2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30060539

RESUMEN

The adaptive coordination of trust services can provide highly dependable and personalized solutions for industrial requirements in the service-oriented industrial internet of things (IIoT) architecture to achieve efficient utilization of service resources. Although great progress has been made, trust service coordination still faces challenging problems such as trustless industry service, poor coordination, and quality of service (QoS) personalized demand. In this paper, we propose a QoS-driven and adaptive trust service coordination method to implement Pareto-efficient allocation of limited industrial service resources in the background of the IIoT. First, we established a Pareto-effective and adaptive industrial IoT trust service coordination model and introduced a blockchain-based adaptive trust evaluation mechanism to achieve trust evaluation of industrial services. Then, taking advantage of a large and complex search space for solution efficiency, we introduced and compared multi-objective gray-wolf algorithms with the particle swarm optimization (PSO) and dragonfly algorithms. The experimental results showed that by judging and blacklisting malicious raters quickly and accurately, our model can efficiently realize self-adaptive, personalized, and intelligent trust service coordination under the given constraints, improving not only the response time, but also the success rate in coordination.

14.
New Phytol ; 215(1): 338-350, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28464281

RESUMEN

Small RNAs (sRNAs), an important type of pathogenicity factor, contribute to impairing host immune responses. However, little is known about sRNAs in Puccinia striiformis f. sp. tritici (Pst), one of the most destructive pathogens of wheat (Triticum aestivum L.). Here, we report a novel microRNA-like RNA (milRNA) from Pst termed microRNA-like RNA 1 (Pst-milR1), which suppresses wheat defenses during wheat-Pst interactions. We identified Pst-milR1 as a novel milRNA in Pst. Biological prediction and co-transformation showed that Pst-milR1 takes part in cross-kingdom RNA interference (RNAi) events by binding the wheat pathogenesis-related 2 (PR2) gene. Silencing of the Pst-milR1 precursor resulted in increased wheat resistance to the virulent Pst isolate CYR31. PR2 knock-down plants increased the susceptibility of wheat to the avirulent Pst isolate CYR23. This suggests that Pst-milR1 represses the plant immune response by suppressing the expression of PR2. Taking our findings together, we postulate that Pst-milR1 is an important pathogenicity factor in Pst, which acts as an effector to suppress host immunity. Our results provide significant new insights into the pathogenicity of the stripe rust pathogen.


Asunto(s)
Basidiomycota/patogenicidad , MicroARNs/fisiología , Triticum/microbiología , Resistencia a la Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia/genética
15.
J Clin Monit Comput ; 30(3): 265-74, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26242233

RESUMEN

To systemically evaluate the accuracy of pleth variability index to predict fluid responsiveness in mechanically ventilated patients. A literature search of PUBMED, OVID, CBM, CNKI and Wanfang Data for clinical studies in which the accuracy of pleth variability index to predict fluid responsiveness was performed (last update 5 April 2015). Related journals were also searched manually. Two reviewers independently assessed trial quality according to the modified QUADAS items. Heterogeneous studies and meta-analysis were conducted by Meta-Disc 1.4 software. A subgroup analysis in the operating room (OR) and in intensive care unit (ICU) was also performed. Differences between subgroups were analyzed using the interaction test. A total of 18 studies involving 665 subjects were included. The pooled area under the receiver operating characteristic curve (AUC) to predict fluid responsiveness in mechanically ventilated patients was 0.88 [95 % confidence interval (CI) 0.84-0.91]. The pooled sensitivity and specificity were 0.73 (95 % CI 0.68-0.78) and 0.82 (95 % CI 0.77-0.86), respectively. No heterogeneity was found within studies nor between studies. And there was no significant heterogeneity within each subgroup. No statistical differences were found between OR subgroup and ICU subgroup in the AUC [0.89 (95 % CI 0.85-0.92) versus 0.90 (95 % CI 0.82-0.94); P = 0.97], and in the specificity [0.84 (95 % CI 0.75-0.86) vs. 0.84 (95 % CI 0.75-0.91); P = 1.00]. Sensitivity was higher in the OR subgroup than the ICU subgroup [0.84 (95 % CI 0.78-0.88) vs. 0.56 (95 % CI 0.47-0.64); P = 0.00004]. The pleth variability index has a reasonable ability to predict fluid responsiveness.


Asunto(s)
Fluidoterapia , Monitoreo Fisiológico , Respiración Artificial , Análisis de Varianza , Fluidoterapia/estadística & datos numéricos , Hemodinámica , Humanos , Monitoreo Fisiológico/estadística & datos numéricos , Sensibilidad y Especificidad
16.
Microbiol Spectr ; 12(1): e0164923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38038455

RESUMEN

IMPORTANCE: Suaeda play an important ecological role in reclamation and improvement of agricultural saline soil due to strong salt tolerance. At present, research on Suaeda salt tolerance mainly focuses on the physiological and molecular regulation. However, the important role played by microbial communities in the high-salinity tolerance of Suaeda is poorly studied. Our findings have important implications for understanding the distribution patterns and the driving mechanisms of different Suaeda species and soil salinity levels. In addition, we explored the key microorganisms that played an important ecological role in Suaeda rhizosphere. We provide a basis for biological improvement and ecological restoration of salinity-affected areas.


Asunto(s)
Chenopodiaceae , Rizosfera , Archaea , Salinidad , Bacterias/genética , Suelo/química , Chenopodiaceae/fisiología , Microbiología del Suelo
17.
Front Microbiol ; 15: 1287083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756734

RESUMEN

Yeast is one of the important symbiotic flora in the insect gut. However, little is known about the gut yeast in Helicoverpa armigera (Lepidoptera: Noctuidae) under various dietary conditions. The composition and function of the intestinal yeast community also remain unclear. In this research, we explored the composition of yeast microorganisms in H. armigera larvae under different feeding environments, including apple, pear, tomato, artificial diet (laboratory feeding), Urtica fissa, Helianthus annuus, and Zinnia elegans (wild environment) using high-throughput sequencing. Results showed that a total of 43 yeast OTU readings were obtained, comprising 33 yeast genera and 42 yeast species. The yeast genera with a total content of more than 5% were Hanseniaspora (36.27%), Moesziomyces (21.47%), Trichosporon (16.20%), Wickerhamomyces (12.96%) and Pichia (6.38%). Hanseniaspora was predominant when fed indoors with fruits, whereas Moesziomyces was only detected in the wild group (Urtica fissa, Helianthus annuus, Zinnia elegans) and the artificial diet group. After transferring the larvae from artificial diet to apple, pear and tomato, the composition of intestinal yeast community changed, mainly reflected in the increased relative abundance of Hanseniaspora and the decreased abundance of Trichosporon. Simultaneously, the results of α diversity index indicated that the intestinal yeast microbial diversity of H. armigera fed on wild plants was higher than that of indoor artificial feeding. PCoA and PERMANOVA analysis concluded that there were significant differences in the gut yeast composition of H. armigera larvae on different diets. Our results confirmed that gut yeast communities of H. armigera can be influenced by host diets and may play an important role in host adaptation.

18.
J Fungi (Basel) ; 10(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667957

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can help plants absorb more mineral nutrients after they colonize plant roots, and the mycelia harmonize the soil structure and physical and chemical properties by secreting compounds. AMF species co-evolve with their habitat's geographic conditions and hosts; this gradually causes differences in the AMF species. By using Melzer's reagent to analyze the morphology and using Illumina Miseq sequencing technology to perform the molecular identification of AMF communities among the four typical L. barbarum planting areas (Zhongning, Guyuan, Jinghe, and Dulan) investigated, the variety of L. barbarum roots and rhizosphere AMF communities was greater in the Zhongning area, and every region additionally had endemic species. The successfully amplified AMF was re-applied to the L. barbarum seedlings. We found that the total dry weight and accumulation of potassium increased significantly (p < 0.05), and the root volume and number of root branches were significantly higher in the plants that were inoculated with Paraglomus VTX00375 in the pot experiment, indicating that AMF improves root development and promotes plant growth. We have investigated AMF germplasm species in four regions, and we are committed to the development of native AMF resources. The multiplication and application of AMF will be conducive to realizing the potential role of biology in the maintenance of agroecology.

19.
Cancer Lett ; 590: 216844, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38582394

RESUMEN

Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.


Asunto(s)
Chaperonina con TCP-1 , Glioblastoma , Estabilidad Proteica , Proteínas Proto-Oncogénicas p21(ras) , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Chaperonina con TCP-1/metabolismo , Chaperonina con TCP-1/genética , Línea Celular Tumoral , Estabilidad Proteica/efectos de los fármacos , Artemisininas/farmacología , Progresión de la Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
20.
J Phys Chem Lett ; 15(12): 3354-3362, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38498427

RESUMEN

This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA