Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Exp Hypertens ; 45(1): 2166948, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36751048

RESUMEN

BACKGROUND: Inflammatory response of human vascular smooth muscle cells (hVSMCs) is a driving factor in hypertension progression. It has been reported that miR-3646 was significantly up-regulated in serum samples from patients with coronary artery disease and acute myocardial infarction mice. However, its role and underlying molecular mechanism related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs remain unclear. OBJECTIVE: We aimed to explore the potential molecular mechanisms related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs. METHODS: Ang II-induced hypertension model was established after hVSMCs treated with 1 µM Ang II at 24 h. The interaction between microRNA 3646 (miR-3646) and cytochrome P450 2J2 (CYP2J2) was assessed by dual-luciferase reporter gene assay. MTS assay, Lipid Peroxidation MDA Assay Kit, ELISA, Western blot, and qRT-PCR were performed to examine viability, malondialdehyde (MDA) level, inflammatory cytokine levels, and the level of genes and proteins. RESULTS: Our findings illustrated that miR-3646 was up-regulated but CYP2J2 was down-regulated in Ang II-induced hVSMCs. Mechanically, miR-3646 negatively targeted to CYP2J2 in Ang II-induced hVSMCs. These findings indicated that miR-3646 regulated inflammatory response of Ang II-induced hVSMCs via targeting CYP2J2. Moreover, functional researches showed that CYP2J2 overexpression alleviated inflammatory response of Ang II-induced hVSMCs via epoxyeicosatrienoic acids/peroxisome proliferator-activated receptor-γ (EETs/PPARγ) axis, and miR-3646 aggravated inflammatory response of Ang II-induced hVSMCs via mediating CYP2J2/EETs axis. CONCLUSION: MiR-3646 accelerated inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis. Our findings illustrated the specific molecular mechanism of miR-3646 regulating hypertension.


Asunto(s)
Hipertensión , MicroARNs , Animales , Humanos , Ratones , Angiotensina II/farmacología , Células Cultivadas , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/metabolismo , Eicosanoides/metabolismo
2.
Inflamm Res ; 71(9): 1109-1121, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35854140

RESUMEN

BACKGROUND: Coronary artery disease (CAD) seriously disturbs the life of people. LncRNA H19 is reported to promote the progression of CAD; Nevertheless, the detailed mechanism by which H19 modulates CAD development is unclear. METHODS: Clinical samples of CAD patients were collected, meanwhile we established in vitro and in vivo models of CAD by treating HCAECs with ox-LDL and feeding ApoE-/- mice with high fat diets (HFD). MTT assay was adopted to assess the cell viability. Transwell detection was applied to test the migration, and apoptosis was tested by flow cytometry. The levels of inflammatory cytokines were examined by ELISA. The relation among H19, miR-20a-5p and HDAC4 was explored by dual luciferase reporter and RIP assay. RESULTS: H19 and HDAC4 levels were elevated, while miR-20a-5p was reduced in plasma of CAD patients and ox-LDL-treated HCAECs. ox-LDL increased H19 level and induced apoptosis and inflammation in HCAECs, while silencing of H19 rescued this phenomenon. In addition, the level of H19 was negatively correlated with miR-20a-5p, and miR-20a-5p inhibitor restored the effect of H19 silencing on HCAECs function. HDAC4 was the downstream mRNA of miR-20a-5p, and miR-20a-5p upregulation reversed ox-LDL-induced HCAECs injury through targeting HDAC4. Furthermore, H19 silencing significantly alleviated the coronary atherosclerotic plaques and inhibited the inflammatory responses in vivo. CONCLUSIONS: We proved that knockdown of H19 alleviated ox-LDL-induced HCAECs injury via miR-20a-5p/HDAC4 axis, which might provide a new tactics against CAD.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Apoptosis , Proliferación Celular , Histona Desacetilasas/genética , Histona Desacetilasas/farmacología , Humanos , Inflamación/genética , Lipoproteínas LDL/farmacología , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética , Proteínas Represoras/farmacología
3.
Heart Vessels ; 37(6): 1085-1096, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35320391

RESUMEN

Atherosclerosis (AS) is the basic lesion underlying the occurrence and development of cerebrovascular diseases. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in AS. We aimed to explore the role of SNHG16 in AS and the molecular mechanism of VSMC involvement in the regulation of AS. The expression levels of SNHG16, miR-30c-5p and SDC2 were detected by qRT-PCR. CCK-8, wound healing and Transwell assays were used to assess ox-LDL-induced VSMC proliferation, migration, and invasion, respectively. Western blot analysis was used to detect SDC2 and MEK/ERK pathway-related protein levels. A dual-luciferase reporter assay confirmed the binding of SNHG16 with miR-30c-5p and miR-30c-5p with SDC2. SNHG16 and SDC2 expression was upregulated in patients with AS and ox-LDL-induced VSMCs, while miR-30c-5p was downregulated. Ox-LDL-induced VSMC proliferation and migration were increased, and the MEK/ERK signalling pathway was activated. MiR-30c-5p was targeted to SNHG16 and SDC2. Downregulating SNHG16 or upregulating miR-30c-5p inhibited ox-LDL-induced VSMC proliferation and migration and inhibited MEK/ERK signalling pathway activation. In contrast, downregulating miR-30c-5p or upregulating SDC2 reversed the effects of downregulating SNHG16 or upregulating miR-30c-5p. Furthermore, downregulating SDC2 inhibited ox-LDL-induced proliferation and migration of VSMCs and inhibited activation of the MEK/ERK signalling pathway, while upregulating lncRNA SNHG16 reversed the effects of downregulating SDC2. Downregulation of SNHG16 inhibited VSMC proliferation and migration in AS by targeting the miR-30c-5p/SDC2 axis. This study provides a possible therapeutic approach to AS.


Asunto(s)
Aterosclerosis , Arteriosclerosis Intracraneal , MicroARNs , ARN Largo no Codificante/genética , Aterosclerosis/patología , Movimiento Celular , Proliferación Celular/genética , Células Cultivadas , Regulación hacia Abajo , Humanos , Arteriosclerosis Intracraneal/metabolismo , Arteriosclerosis Intracraneal/patología , Lipoproteínas LDL , MicroARNs/genética , MicroARNs/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Sindecano-2/genética , Sindecano-2/metabolismo , Sindecano-2/farmacología
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 42(3): 246-250, 2017 Mar 28.
Artículo en Zh | MEDLINE | ID: mdl-28364095

RESUMEN

OBJECTIVE: To explore Toll-like receptor 2 (TLR2) and TLR4 polymorphism in Han people from Hunan region and its association with coronary atherosclerotic heart disease.
 Methods: Sanger sequence and statistical analysis were performed to identify the polymorphism of TLR2 and TLR4 genes in 347 unrelated Hunan Han subjects, including 180 healthy people (control group) and 167 patients with coronary atherosclerotic heart disease (coronary atherosclerotic heart disease group).
 Results: There was no significant difference in the genotype frequency and allelic frequency for TLR2 SNP2258G>A and TLR4 SNP896A>G between the 2 groups (P>0.05), while there was significant difference in the TLR4 SNP1196C>T between the 2 groups (P<0.05).
 Conclusion: TLR4 SNP1196C>T polymorphism is associated with coronary atherosclerotic heart disease in Chinese Han populationin in Hunan region.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Polimorfismo de Nucleótido Simple , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Pueblo Asiatico , Estudios de Casos y Controles , China/etnología , Enfermedad de la Arteria Coronaria/etnología , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA