RESUMEN
Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization.IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Antígenos CD4/inmunología , Anticuerpos Anti-VIH/inmunología , Macaca mulatta/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Sitios de Unión de Anticuerpos/inmunología , VIH-1/inmunología , Macaca mulatta/virología , VacunaciónRESUMEN
The human immunodeficiency virus envelope protein is the key element mediating entry into host cells. Conformational rearrangement of Env upon binding to the host CD4 receptor and chemokine coreceptor drives membrane fusion. We elucidated the quaternary arrangement of the soluble Env trimeric immunogen o-gp140ΔV2TV1, in both its native (unliganded) and CD4-induced (liganded) states by cryoelectron microscopy and molecular modeling. The liganded conformation was elicited by binding gp140 to the synthetic CD4-mimicking miniprotein CD4m. Upon CD4m binding, an outward domain shift of the three gp120 subunits diminishes gp120-gp41 interactions, whereas a "flat open" concave trimer apex is observed consequent to gp120 tilting away from threefold axis, likely juxtaposing the fusion peptide with the host membrane. Additional features observed in the liganded conformation include rotations of individual gp120 subunits that may release gp41 for N- and C-helix refolding and also may lead to optimal exposure of the elicited coreceptor binding site. Such quaternary arrangements of gp140 lead to the metastable liganded conformation, with putative locations of exposed epitopes contributing to a description of sequential events occurring prior to membrane fusion. Our observations imply a mechanism whereby a soluble Env trimeric construct, as opposed to trimers extracted from virions, may better expose crucial epitopes such as the CD4 binding site and V3, as well as epitopes in the vicinity of gp41, subsequent to conjugation with CD4m. Structural features gleaned from our studies should aid the design of Env-based immunogens for inducement of potent broadly neutralizing antibodies against exposed conformational epitopes.
Asunto(s)
VIH-1/inmunología , Epítopos Inmunodominantes/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Antígenos CD4/inmunología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/inmunología , Ligandos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
CD4 binding on gp120 leads to the exposure of highly conserved regions recognized by the HIV co-receptor CCR5 and by CD4-induced (CD4i) antibodies. A covalent gp120-CD4 complex was shown to elicit CD4i antibody responses in monkeys, which was correlated with control of the HIV virus infection (DeVico, A., Fouts, T., Lewis, G. K., Gallo, R. C., Godfrey, K., Charurat, M., Harris, I., Galmin, L., and Pal, R. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 17477-17482). Because the inclusion of CD4 in a vaccine formulation should be avoided, due to potential autoimmune reactions, we engineered small sized CD4 mimetics (miniCD4s) that are poorly immunogenic and do not induce anti-CD4 antibodies. We made covalent complexes between such an engineered miniCD4 and gp120 or gp140, through a site-directed coupling reaction. These complexes were recognized by CD4i antibodies as well as by the HIV co-receptor CCR5. In addition, they elicit CD4i antibody responses in rabbits and therefore represent potential vaccine candidates that mimic an important HIV fusion intermediate, without autoimmune hazard.
Asunto(s)
Linfocitos T CD4-Positivos/virología , Proteína gp120 de Envoltorio del VIH/química , VIH-1/química , Proteínas del Envoltorio Viral/química , Animales , Presentación de Antígeno , Células CHO , Cricetinae , Cricetulus , Reactivos de Enlaces Cruzados/química , Cisteína/química , Disulfuros , Unión Proteica , Conformación Proteica , Receptores CCR5/químicaRESUMEN
With advances in technology and the popularity of the Internet, consumers increasingly rely on various sources of electronic word-of-mouth (eWOM), such as online user reviews and critical reviews, in their decision-making processes. Despite general consensus on the importance of eWOM and the ability of critical reviews to influence product sales, very little is known about the mediation between critical reviews and user reviews. Therefore, we used path analysis to examine how critical reviews and user reviews simultaneously affect box office revenues using eWOM data collected from Metacritic.com and IMDb.com, and box office revenue information collected from BoxOfficeMojo.com. The results showed that critical reviews valence not only directly affects box office revenues but also increases active postings in the community and user reviews volume, thus indirectly leading to greater box office revenues. The study provides strategic guidance and practical implications for eWOM communication management.
RESUMEN
Internet information has become the main way for individuals to obtain health information. The purpose of this paper is to explore the role online information sources play in health decision-making. Specifically, we investigated the relationship between online information sources and patient satisfaction, as well as their moderating effects as compared to those of other information sources. Using logistical regression analysis, we conducted the longitudinal data on 54,027 doctors and 952,877 online doctor reviews from 3,525 hospitals in 31 provinces to test a proposed research model. The results showed that patient satisfaction was generally lower for individuals who found a doctor through online information sources. Therefore, we suggest that patients consider the doctor quality, the doctor popularity, and patient involvement. In addition, we found that the doctor popularity had a negative moderating effect between online information sources and patient satisfaction, while patient involvement had a positive moderating effect between online information sources and patient satisfaction. The study provides strategic guidance and practical implications for policies, online healthcare community managers, and patients.
Asunto(s)
Satisfacción del Paciente , Médicos , Humanos , Participación del Paciente , Relaciones Médico-PacienteRESUMEN
Development of broadly cross-reactive neutralizing antibodies (NAbs) remains a major goal of HIV-1 vaccine development, but most candidate envelope immunogens have had limited ability to cross-neutralize heterologous strains. To evaluate the immunogenicity of subtype A variants of HIV-1, rabbits were immunized with pairs of closely related subtype A envelopes from the same individual. In each immunogen pair, one variant was readily neutralized by a variety of monoclonal antibodies and plasma antibodies, while the other was neutralization resistant, suggesting differences in the exposures of key epitopes. The breadth of the antibody response was evaluated against subtype A, B, C, and D variants of HIV-1. The specificity of the immunogen-derived neutralizing antibody response was also compared to that of the infected individuals from whom these variants were cloned. None of the immunogens produced broad neutralizing antibodies in immunized animals, and most of the neutralizing antibodies were directed to the variable loops, particularly the V3 loop. No detectable antibodies to either of the potentially exposed conserved epitopes, the membrane proximal external region, or the CD4 binding site were found with immunized rabbits. In contrast, relatively little of the neutralizing activity within the plasma samples of the infected individuals was directed to linear epitopes within the variable loops. These data indicate that immunogens designed to expose conserved regions did not enhance generation of broadly neutralizing antibodies in comparison with the immunogens that failed to expose those regions using this immunization approach.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , VIH-1/química , Humanos , Datos de Secuencia Molecular , Pruebas de Neutralización , Conejos , Alineación de Secuencia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV infection at a relevant mucosal portal of entry.
Asunto(s)
Alphavirus/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por VIH/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Alphavirus/genética , Animales , Anticuerpos Antivirales/sangre , Línea Celular , Modelos Animales de Enfermedad , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/inmunología , Humanos , Inmunización , Macaca , Masculino , Polisorbatos/administración & dosificación , Replicón , Virus de la Inmunodeficiencia de los Simios/genética , Escualeno/administración & dosificación , Escualeno/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
The RV144 Phase III clinical trial with ALVAC-HIV prime and AIDSVAX B/E subtypes CRF01_AE (A244) and B (MN) gp120 boost vaccine regime in Thailand provided a foundation for the future development of improved vaccine strategies that may afford protection against the human immunodeficiency virus type 1 (HIV-1). Results from this trial showed that immune responses directed against specific regions V1V2 of the viral envelope (Env) glycoprotein gp120 of HIV-1, were inversely correlated to the risk of HIV-1 infection. Due to the low production of gp120 proteins in CHO cells (2-20 mg/L), cleavage sites in V1V2 loops (A244) and V3 loop (MN) causing heterogeneous antigen products, it was an urgent need to generate CHO cells harboring A244 gp120 with high production yields and an additional, homogenous and uncleaved subtype B gp120 protein to replace MN used in RV144 for the future clinical trials. Here we describe the generation of Chinese Hamster Ovary (CHO) cell lines stably expressing vaccine HIV-1 Env antigens for these purposes: one expressing an HIV-1 subtype CRF01_AE A244 Env gp120 protein (A244.AE) and one expressing an HIV-1 subtype B 6240 Env gp120 protein (6240.B) suitable for possible future manufacturing of Phase I clinical trial materials with cell culture expression levels of over 100 mg/L. The antigenic profiles of the molecules were elucidated by comprehensive approaches including analysis with a panel of well-characterized monoclonal antibodies recognizing critical epitopes using Biacore and ELISA, and glycosylation analysis by mass spectrometry, which confirmed previously identified glycosylation sites and revealed unknown sites of O-linked and N-linked glycosylations at non-consensus motifs. Overall, the vaccines given with MF59 adjuvant induced higher and more rapid antibody (Ab) responses as well as higher Ab avidity than groups given with aluminum hydroxide. Also, bivalent proteins (A244.AE and 6240.B) formulated with MF59 elicited distinct V2-specific Abs to the epitope previously shown to correlate with decreased risk of HIV-1 infection in the RV144 trial. All together, these results provide critical information allowing the consideration of these candidate gp120 proteins for future clinical evaluations in combination with a potent adjuvant.
Asunto(s)
Adyuvantes Inmunológicos , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Reacciones Antígeno-Anticuerpo , Células CHO , Cricetinae , Cricetulus , Epítopos/inmunología , Femenino , Glicosilación , Cobayas , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Antígenos VIH/genética , Antígenos VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , VIH-1/inmunología , VIH-1/metabolismo , Humanos , Polisorbatos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Escualeno/inmunologíaRESUMEN
The membrane proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein (Env) contains determinants for broadly neutralizing antibodies and has remained an important focus of vaccine design. However, creating an immunogen that elicits broadly neutralizing antibodies to this region has proven difficult in part due to the relative inaccessibility of the MPER in the native conformation of Env. Here, we describe the antigenicity and immunogenicity of a panel of oligomeric gp41 immunogens designed to model a fusion-intermediate conformation of Env in order to enhance MPER exposure in a relevant conformation. The immunogens contain segments of the gp41 N- and C-heptad repeats to mimic a trapped intermediate, followed by the MPER, with variations that include different N-heptad lengths, insertion of extra epitopes, and varying C-termini. These well-characterized immunogens were evaluated in two different immunization protocols involving gp41 and gp140 proteins, gp41 and gp160 DNA primes, and different immunization schedules and adjuvants. We found that the immunogens designed to reduce extension of helical structure into the MPER elicited the highest MPER antibody binding titers, but these antibodies lacked neutralizing activity. The gp41 protein immunogens also elicited higher MPER titers than the gp140 protein immunogen. In prime-boost studies, the best MPER responses were seen in the groups that received DNA priming with gp41 vectors followed by gp41 protein boosts. Finally, although titers to the entire protein immunogen were similar in the two immunization protocols, MPER-specific titers differed, suggesting that the immunization route, schedule, dose, or adjuvant may differentially influence MPER immunogenicity. These findings inform the design of future MPER immunogens and immunization protocols.
Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Vacunas Sintéticas/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Ensayo de Inmunoadsorción Enzimática , Pruebas de Neutralización , Conformación Proteica , ConejosRESUMEN
OBJECTIVES: To evaluate the immunogenicity of sequence-modified HIV env and gag in baboons using DNA prime and protein boost strategy. METHODS: Synthetic sequence-modified HIV gene cassettes were constructed that expressed three different forms of Env proteins, gp140, gp140mut and gp140TM, plus or minus a mutation in the protease-cleavage site. These plasmids were used to immunize baboons (Papio cynocephalus). A group of baboons was also immunized with both env and gag DNA followed by p55Gag virus-like particles (VLP) boost. RESULTS: Modest antibody responses and low or no lymphoproliferative responses were observed following multiple DNA immunizations. In contrast, strong antibodies and substantial antigen-specific lymphoproliferative responses were seen following booster immunizations with oligomeric Env protein (o-gp140US4) in MF59. Neutralizing antibody responses were scored against T cell line adapted HIV-1 strains after the protein boosters, but neutralizing responses were low or absent against homologous and heterologous primary isolate strains. In the group receiving both gag and env vaccines, modest antigen-specific antibody and lymphoproliferative responses were scored after the DNA immunizations; these responses were enhanced several-fold upon boosting with the VLP preparations. The addition of Gag antigen did not interfere with Env-specific antibody responses, but there was a negative effect on the levels of Env-specific lymphoproliferation. CONCLUSIONS: These results highlight the importance of improving the potency of HIV DNA vaccines by enhanced DNA delivery and prime-boost vaccine technologies to generate more robust immune responses in larger animal models. In addition, care must be taken when immunizations with Env and Gag antigens are performed together.
Asunto(s)
Vacunas contra el SIDA/inmunología , Productos del Gen env/inmunología , VIH-1/inmunología , Vacunas de ADN/inmunología , Animales , Afinidad de Anticuerpos , División Celular/inmunología , ADN Viral/genética , Femenino , Productos del Gen env/genética , Productos del Gen gag/inmunología , Anticuerpos Anti-VIH/biosíntesis , VIH-1/genética , Inmunización/métodos , Inmunización Secundaria/métodos , Mutagénesis Insercional , Papio , Linfocitos T Colaboradores-Inductores/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia HumanaRESUMEN
Hypervariable loops of HIV-1 Env protein gp120 are speculated to play roles in the conformational transition of Env to the receptor binding-induced metastable state. Structural analysis of full-length Env-based immunogens, containing the entire V2 loop, displayed tighter association between gp120 subunits, resulting in a smaller trimeric diameter than constructs lacking V2. A prominent basal quaternary location of V2 and V3' that challenges previous reports would facilitate gp41-independent gp120-gp120 interactions and suggests a quaternary mechanism of epitope occlusion facilitated by hypervariable loops. Deletion of V2 resulted in dramatic exposure of basal, membrane-proximal gp41 epitopes, consistent with its predicted basal location. The structural features of HIV-1 Env characterized here provide grounds for a paradigm shift in loop exposure and epitope occlusion, while providing substantive rationale for epitope display required for elicitation of broadly neutralizing antibodies, as well as substantiating previous pertinent literature disregarded in recent reports.
Asunto(s)
Epítopos/química , Fragmentos de Péptidos/química , Multimerización de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Antígenos CD4/química , Antígenos CD4/metabolismo , Epítopos/genética , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Péptidos/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Eliminación de Secuencia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
OBJECTIVE: To study the complex formed between Tat protein and Env soluble trimeric immunogen, and compare with previously determined structures of Env native trimers and Env-CD4m complexes. DESIGN: The soluble Env trimer was used to mimic the spike glycoprotein on the virus surface for the study. To overcome limitations of other structural determination methods, cryoelectron microscopy was employed to image the complex, and single particle reconstruction was utilized to reconstruct the structure of the complex from collected micrographs. Molecular modeling of gp120-Tat was performed to provide atomic coordinates for docking. METHODS: Images were preprocessed by multivariate statistical analysis to identify principal components of variation then submitted for reconstruction. Reconstructed structures were docked with modeled gp120-Tat atomic coordinates to study the positions of crucial epitopes. RESULTS: Analysis of the Env-Tat complex demonstrated an intermediate structure between Env native trimers and Env-CD4m structures. Docking results indicate that the CD4-binding site and the V3 loop are exposed in the Env-Tat complex. The integrin-binding sequence in Tat was also exposed in Env-Tat docking. CONCLUSION: The intermediate structure induced by Tat-interaction with Env could potentially provide an explanation for increased virus infection in the presence of Tat protein. Consequently, exposure of CD4-binding sites and a putative integrin-binding sequence on Tat in the complex may provide a new avenue for rational design of an effective HIV vaccine.
Asunto(s)
Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Microscopía por Crioelectrón , Proteína gp120 de Envoltorio del VIH/química , VIH-1/química , Humanos , Unión Proteica , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/químicaRESUMEN
Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will 'snap' Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to 'lock' gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.
Asunto(s)
Antígenos CD4/inmunología , Disulfuros/química , Epítopos/inmunología , Proteína gp120 de Envoltorio del VIH/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Animales , Anticuerpos/metabolismo , Sitios de Unión , Antígenos CD4/química , Antígenos CD4/genética , Epítopos/química , Epítopos/genética , Femenino , Proteína gp120 de Envoltorio del VIH/administración & dosificación , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/química , VIH-1/genética , VIH-1/inmunología , Humanos , Inmunización , Ligandos , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Conejos , Resonancia por Plasmón de Superficie , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
Identification of optimal antigen(s) and adjuvant combination(s) to elicit potent, protective, and long-lasting immunity has been a major challenge for the development of effective vaccines against chronic viral pathogens, such as HIV-1, for which there are not yet any licensed vaccines. Here we describe the use of a novel adjuvant approach employing Carbopol 971P(®) NF (hereafter referred to as Carbopol971P), a cross-linked polyanionic carbomer, in combination with the Novartis proprietary oil-in-water adjuvant, MF59, as a potentially safe and effective adjuvant to augment humoral immune responses to the HIV-1 envelope glycoprotein (Env). Intramuscular immunization of small animals with recombinant Env glycoprotein (gp140) formulated in Carbopol971P plus MF59 gave significantly higher titers of binding and virus neutralizing antibodies as compared to immunization using gp140 with either MF59 or Carbopol971P alone. In addition, the antibodies generated were of higher avidity. Importantly, the use of Carbopol971P plus MF59 did not cause any serious adverse reactions or any obvious health problems in animals upon intramuscular administration. Hence, the Carbopol971P plus MF59 adjuvant formulation may provide a benefit for future vaccine applications.
Asunto(s)
Vacunas contra el SIDA/inmunología , Acrilatos/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Anti-VIH/sangre , VIH-1/inmunología , Polisorbatos/administración & dosificación , Escualeno/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Acrilatos/efectos adversos , Acrilatos/metabolismo , Adyuvantes Inmunológicos/efectos adversos , Animales , Anticuerpos Neutralizantes/inmunología , Femenino , Anticuerpos Anti-VIH/inmunología , Humanos , Concentración de Iones de Hidrógeno , Polisorbatos/efectos adversos , Unión Proteica , Estabilidad Proteica , Conejos , Escualeno/efectos adversos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M) and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application.
Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Formación de Anticuerpos , Antígenos CD4/inmunología , VIH-1/inmunología , Proteínas Recombinantes/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/síntesis química , Vacunas contra el SIDA/inmunología , Animales , Formación de Anticuerpos/efectos de los fármacos , Biomimética , Reactivos de Enlaces Cruzados/farmacología , Epítopos/inmunología , Femenino , Anticuerpos Anti-VIH/metabolismo , Inmunización , Pruebas de Neutralización , Conejos , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/farmacología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
The importance of the strength of antigen adsorption by aluminum-containing adjuvants on immunopotentiation was studied using HIV 1 SF162dV2gp140 (gp140), a potential HIV/AIDS antigen. The strengths of adsorption by aluminum hydroxide (AH) adjuvant and aluminum phosphate adjuvant, as measured by the Langmuir adsorptive coefficient, were 1900 and 400 mL/mg, respectively. The strength of adsorption by AH was modified by pretreatment of AH with two different concentrations of potassium dihydrogen phosphate to produce phosphate-treated aluminum hydroxide adjuvants having adsorptive coefficients of 1200 and 800 mL/mg. The four adjuvants were used to prepare vaccines containing either 1 or 10 µg of gp140 per dose. Antibody studies in mice revealed that the presence of an adjuvant increased the immune response in comparison with a solution of gp140 when the dose was 1 µg. Furthermore, the immune response was inversely related to the adsorptive coefficient. In contrast, no significant difference in immunopotentiation was observed between treatments in the presence or absence of an adjuvant when the dose of gp140 was 10 µg. Analysis of the binding of gp140 to CD4 and anti-gp140 monoclonal antibodies by surface plasmon resonance suggests that tight binding induced structural changes in the antigen.
Asunto(s)
Vacunas contra el SIDA , Adyuvantes Inmunológicos/química , Hidróxido de Aluminio/química , VIH-1/inmunología , Inmunidad Humoral , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Vacunas contra el SIDA/química , Vacunas contra el SIDA/inmunología , Adsorción , Animales , Formación de Anticuerpos/inmunología , Composición de Medicamentos , Femenino , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Resonancia por Plasmón de Superficie , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
Improving the potency, breadth, and durability of neutralizing antibody responses to HIV are major challenges for HIV vaccine development. To address these challenges, the studies described evaluate in rabbits the titers, breadth, and epitope specificities of antibody responses elicited by HIV envelope subunit vaccines adjuvanted with MF59 with or without CpG oligodeoxynucleotide (ODN). Animals were immunized with trimeric o-gp140DeltaV2 derived from subtype B HIV-1(SF162) or subtype C HIV-1(TV1), or proteins from both strains. Immunization with SF162 or TV1 with MF59/CpG elicited higher titers of binding and neutralizing antibodies to SF162 than monovalent immunization with MF59 alone (P<0.01). Bivalent immunization increased binding and neutralizing antibody titers over single envelope immunization in MF59 (P<0.01). Bivalent immunization also improved neutralization breadth. Epitope mapping indicated neutralizing activity in rabbits was directed to V3 and V4. Overall, our data suggests that a multivalent vaccination approach with MF59 and CpG can enhance humoral responses to HIV-1.
Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Adyuvantes Inmunológicos , Animales , Formación de Anticuerpos/inmunología , Evaluación Preclínica de Medicamentos , Infecciones por VIH/prevención & control , Pruebas de Neutralización , Oligodesoxirribonucleótidos/inmunología , Polisorbatos , Conejos , Escualeno/inmunología , Vacunación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
To counteract the problems associated with the purification of HIV envelope, we developed a new purification method exploiting the high affinity of a peptide mimicking CD4 towards the viral glycoprotein. This miniCD4 was used as a ligand in affinity chromatography and allowed the separation in one step of HIV envelope monomer from cell supernatant and the capture of pre-purified trimer. This simple and robust method of purification yielded to active and intact HIV envelopes as proved by the binding of CCR5 HIV co-receptor, CD4 and a panel of well-characterized monoclonal antibodies. The immunogenicity of miniCD4-purified HIV envelope was further assessed in rats. The analysis of the humoral response indicated that elicited antibodies were able to recognize a broad range of HIV envelopes. Finally, this method based on a chemically synthesized peptide may represent a convenient and versatile tool for protein purification compatible far scale-up in both academic and pharmaceutical researches.
Asunto(s)
Antígenos CD4/metabolismo , Cromatografía de Afinidad/métodos , Proteína gp120 de Envoltorio del VIH/aislamiento & purificación , VIH-1 , Receptores CCR5/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/inmunología , Péptidos/química , Unión Proteica , Multimerización de Proteína , Ratas , Ratas Wistar , Proteínas Recombinantes/metabolismoRESUMEN
We previously reported that an envelope (Env) glycoprotein immunogen (o-gp140DeltaV2SF162) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162 partially protected vaccinated rhesus macaques against pathogenic SHIV(SF162P4) virus. Extending our studies to subtype C isolate TV1, we have purified o-gp140DeltaV2TV1 (subtype C DeltaV2 trimer) to homogeneity, performed glycosylation analysis, and determined its ability to bind CD4, as well as a panel of well-characterized neutralizing monoclonal antibodies (mAb). In general, critical epitopes are preserved on the subtype C DeltaV2 trimer; however, we did not observe significant binding for the b12 mAb. The molecular mass of subtype C DeltaV2 trimer was found to be 450 kDa, and the hydrodynamic radius was found to be 10.87 nm. Our data suggest that subtype C DeltaV2 trimer binds to CD4 with an affinity comparable to o-gp140DeltaV2SF162 (subtype B DeltaV2 trimer). Using isothermal titration calorimetric (ITC) analysis, we demonstrated that all three CD4 binding sites (CD4-BS) in both subtype C and B trimers are exposed and accessible. However, compared to subtype B trimer, the three CD4-BS in subtype C trimer have different affinities for CD4, suggesting a cooperativity of CD4 binding in subtype C trimer but not in subtype B trimer. Negative staining electron microscopy of the subtype C DeltaV2 trimer has demonstrated that it is in fact a trimer. These results highlight the importance of studying subtype C Env, and also of developing appropriate subtype C-specific reagents that may be used for better immunological characterization of subtype C Env for developing an AIDS vaccine.
Asunto(s)
Productos del Gen env/metabolismo , VIH-1/clasificación , VIH-1/metabolismo , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Antígenos CD4/metabolismo , Células CHO , Línea Celular , Cricetinae , Cricetulus , Epítopos , Regulación Viral de la Expresión Génica , Productos del Gen env/química , Productos del Gen env/genética , Variación Genética , Antígenos VIH , Humanos , Unión ProteicaRESUMEN
Immune correlates of vaccine protection from HIV-1 infection would provide important milestones to guide HIV-1 vaccine development. In a proof of concept study using mucosal priming and systemic boosting, the titer of neutralizing antibodies in sera was found to correlate with protection of mucosally exposed rhesus macaques from SHIV infection. Mucosal priming consisted of two sequential immunizations at 12-week intervals with replicating host range mutants of adenovirus type 5 (Ad5hr) expressing the HIV-1(89.6p) env gene. Following boosting with either heterologous recombinant protein or alphavirus replicons at 12-week intervals animals were intrarectally exposed to infectious doses of the CCR5 tropic SHIV(SF162p4). Heterologous mucosal prime systemic boost immunization elicited neutralizing antibodies (Nabs), antibody-dependent cytotoxicity (ADCC), and specific patterns of antibody binding to envelope peptides. Vaccine induced protection did not correlate with the type of boost nor T-cell responses, but rather with the Nab titer prior to exposure.