Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(17): 3726-3743.e24, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37442136

RESUMEN

Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.


Asunto(s)
Corteza Cerebral , Macaca , Análisis de la Célula Individual , Transcriptoma , Animales , Humanos , Ratones , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Macaca/metabolismo , Transcriptoma/genética
2.
Cell ; 181(3): 590-603.e16, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32272060

RESUMEN

Conversion of glial cells into functional neurons represents a potential therapeutic approach for replenishing neuronal loss associated with neurodegenerative diseases and brain injury. Previous attempts in this area using expression of transcription factors were hindered by the low conversion efficiency and failure of generating desired neuronal types in vivo. Here, we report that downregulation of a single RNA-binding protein, polypyrimidine tract-binding protein 1 (Ptbp1), using in vivo viral delivery of a recently developed RNA-targeting CRISPR system CasRx, resulted in the conversion of Müller glia into retinal ganglion cells (RGCs) with a high efficiency, leading to the alleviation of disease symptoms associated with RGC loss. Furthermore, this approach also induced neurons with dopaminergic features in the striatum and alleviated motor defects in a Parkinson's disease mouse model. Thus, glia-to-neuron conversion by CasRx-mediated Ptbp1 knockdown represents a promising in vivo genetic approach for treating a variety of disorders due to neuronal loss.


Asunto(s)
Neurogénesis/fisiología , Neuroglía/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Sistemas CRISPR-Cas/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Regulación de la Expresión Génica/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Células Ganglionares de la Retina/fisiología
3.
Annu Rev Genet ; 55: 453-477, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34530641

RESUMEN

CRISPR-based genome editing holds promise for genome engineering and other applications in diverse organisms. Defining and improving the genome-wide and transcriptome-wide specificities of these editing tools are essential for realizing their full potential in basic research and biomedical therapeutics. This review provides an overview of CRISPR-based DNA- and RNA-editing technologies, methods to quantify their specificities, and key solutions to reduce off-target effects for research and improve therapeutic applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , ADN/genética , Genoma/genética , Transcriptoma
4.
PLoS Biol ; 22(9): e3002833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39316607

RESUMEN

Clathrin-mediated endocytosis (CME) is a critical trafficking process that begins when an elaborate endocytic protein network is established at the plasma membrane. Interaction of early endocytic proteins with anionic phospholipids and/or cargo has been suggested to trigger CME initiation. However, the exact mechanism by which CME sites are initiated has not been fully elucidated. In the budding yeast Saccharomyces cerevisiae, higher levels of anionic phospholipids and cargo molecules exist in the newly formed daughter cell compared to the levels in the mother cell during polarized growth. Taking advantage of this asymmetry, we quantitatively compared CME proteins in S. cerevisiae mother versus daughter cells, observing differences in the dynamics and composition of key endocytic proteins. Our results show that CME site initiation occurs preferentially on regions of the plasma membrane with a relatively higher density of endocytic cargo and/or acidic phospholipids. Furthermore, our combined live cell-imaging and yeast genetics analysis provided evidence for a molecular mechanism in which CME sites are initiated when Yap1801 and Yap1802 (yeast CALM/AP180) and Syp1 (yeast FCHo1/2) coordinate with anionic phospholipids and cargo molecules to trigger Ede1 (yeast Eps15)-centric CME initiation complex assembly at the plasma membrane.


Asunto(s)
Clatrina , Endocitosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Nature ; 571(7764): 275-278, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181567

RESUMEN

Recently developed DNA base editing methods enable the direct generation of desired point mutations in genomic DNA without generating any double-strand breaks1-3, but the issue of off-target edits has limited the application of these methods. Although several previous studies have evaluated off-target mutations in genomic DNA4-8, it is now clear that the deaminases that are integral to commonly used DNA base editors often bind to RNA9-13. For example, the cytosine deaminase APOBEC1-which is used in cytosine base editors (CBEs)-targets both DNA and RNA12, and the adenine deaminase TadA-which is used in adenine base editors (ABEs)-induces site-specific inosine formation on RNA9,11. However, any potential RNA mutations caused by DNA base editors have not been evaluated. Adeno-associated viruses are the most common delivery system for gene therapies that involve DNA editing; these viruses can sustain long-term gene expression in vivo, so the extent of potential RNA mutations induced by DNA base editors is of great concern14-16. Here we quantitatively evaluated RNA single nucleotide variations (SNVs) that were induced by CBEs or ABEs. Both the cytosine base editor BE3 and the adenine base editor ABE7.10 generated tens of thousands of off-target RNA SNVs. Subsequently, by engineering deaminases, we found that three CBE variants and one ABE variant showed a reduction in off-target RNA SNVs to the baseline while maintaining efficient DNA on-target activity. This study reveals a previously overlooked aspect of off-target effects in DNA editing and also demonstrates that such effects can be eliminated by engineering deaminases.


Asunto(s)
ADN/genética , Edición Génica/métodos , Mutagénesis , Mutación , Nucleósido Desaminasas/genética , Ingeniería de Proteínas , ARN/genética , Adenina/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Citosina/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Células HEK293 , Humanos , Nucleósido Desaminasas/metabolismo , Especificidad por Sustrato , Transfección
6.
EMBO J ; 39(22): e104741, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33058229

RESUMEN

Programmable RNA cytidine deamination has recently been achieved using a bifunctional editor (RESCUE-S) capable of deaminating both adenine and cysteine. Here, we report the development of "CURE", the first cytidine-specific C-to-U RNA Editor. CURE comprises the cytidine deaminase enzyme APOBEC3A fused to dCas13 and acts in conjunction with unconventional guide RNAs (gRNAs) designed to induce loops at the target sites. Importantly, CURE does not deaminate adenosine, enabling the high-specificity versions of CURE to create fewer missense mutations than RESCUE-S at the off-targets transcriptome-wide. The two editing approaches exhibit overlapping editing motif preferences, with CURE and RESCUE-S being uniquely able to edit UCC and AC motifs, respectively, while they outperform each other at different subsets of the UC targets. Finally, a nuclear-localized version of CURE, but not that of RESCUE-S, can efficiently edit nuclear RNAs. Thus, CURE and RESCUE are distinct in design and complementary in utility.


Asunto(s)
Citidina Desaminasa/genética , Proteínas/genética , Edición de ARN , Núcleo Celular/metabolismo , Células HEK293 , Humanos , ARN/química , ARN/metabolismo , ARN Guía de Kinetoplastida , Transcriptoma
7.
J Transl Med ; 22(1): 894, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363164

RESUMEN

BACKGROUND: Ductal carcinoma in situ (DCIS) of the breast is an early stage of breast cancer, and preventing its progression to invasive ductal carcinoma (IDC) is crucial for the early detection and treatment of breast cancer. Although single-cell transcriptome analysis technology has been widely used in breast cancer research, the biological mechanisms underlying the transition from DCIS to IDC remain poorly understood. RESULTS: We identified eight cell types through cell annotation, finding significant differences in T cell proportions between DCIS and IDC. Using this as a basis, we performed pseudotime analysis on T cell subpopulations, revealing that differentially expressed genes primarily regulate immune cell migration and modulation. By intersecting WGCNA results of T cells highly correlated with the subtypes and the differentially expressed genes, we identified six key genes: FGFBP2, GNLY, KLRD1, TYROBP, PRF1, and NKG7. Excluding PRF1, the other five genes were significantly associated with overall survival in breast cancer, highlighting their potential as prognostic biomarkers. CONCLUSIONS: We identified immune cells that may play a role in the progression from DCIS to IDC and uncovered five key genes that can serve as prognostic markers for breast cancer. These findings provide insights into the mechanisms underlying the transition from DCIS to IDC, offering valuable perspectives for future research. Additionally, our results contribute to a better understanding of the biological processes involved in breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Femenino , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/inmunología , Carcinoma Intraductal no Infiltrante/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/inmunología , Transcriptoma/genética , Análisis de Expresión Génica de una Sola Célula
8.
Nat Methods ; 17(6): 600-604, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32424272

RESUMEN

Cytosine base editors (CBEs) offer a powerful tool for correcting point mutations, yet their DNA and RNA off-target activities have caused concerns in biomedical applications. We describe screens of 23 rationally engineered CBE variants, which reveal mutation residues in the predicted DNA-binding site can dramatically decrease the Cas9-independent off-target effects. Furthermore, we obtained a CBE variant-YE1-BE3-FNLS-that retains high on-target editing efficiency while causing extremely low off-target edits and bystander edits.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Citosina/metabolismo , ADN/genética , Edición Génica/métodos , ARN/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Células HEK293 , Humanos , Mutación , Mutación Puntual
9.
BMC Bioinformatics ; 23(1): 473, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368946

RESUMEN

BACKGROUND: Personalized therapy has been at the forefront of cancer care, making cancer treatment more effective. Since cancer patients respond individually to drug therapy, predicting the sensitivity of each patient to specific drugs is very helpful to apply therapeutic agents. Traditional methods focus on node (molecular) information but ignore relevant interactions among different nodes, which has very limited application in complex situations, such as cancer drug responses in real clinical practice. RESULTS: Treatment evaluation with Quantified Network (TreeQNet) is a webserver which could predict sensitivity to drugs for patients through the innovative use of proteomic and phosphoproteomic network from tumor tissues. CONCLUSION: TreeQNet service: http://bioinfo.ustc.edu.cn/ . TreeQNet source code: https://github.com/Really00/treeqnet-web-front/ .


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteómica , Programas Informáticos , Neoplasias/tratamiento farmacológico
10.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30275281

RESUMEN

In vivo genetic mutation has become a powerful tool for dissecting gene function; however, multi-gene interaction and the compensatory mechanisms involved can make findings from single mutations, at best difficult to interpret, and, at worst, misleading. Hence, it is necessary to establish an efficient way to disrupt multiple genes simultaneously. CRISPR/Cas9-mediated base editing disrupts gene function by converting a protein-coding sequence into a stop codon; this is referred to as CRISPR-stop. Its application in generating zygotic mutations has not been well explored yet. Here, we first performed a proof-of-principle test by disrupting Atoh1, a gene crucial for auditory hair cell generation. Next, we individually mutated vGlut3 (Slc17a8), otoferlin (Otof) and prestin (Slc26a5), three genes needed for normal hearing function. Finally, we successfully disrupted vGlut3, Otof and prestin simultaneously. Our results show that CRISPR-stop can efficiently generate single or triple homozygous F0 mouse mutants, bypassing laborious mouse breeding. We believe that CRISPR-stop is a powerful method that will pave the way for high-throughput screening of mouse developmental and functional genes, matching the efficiency of methods available for model organisms such as Drosophila.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Cigoto/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Secuencia de Bases , Cóclea/metabolismo , Sordera/genética , Sordera/fisiopatología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Motoras Moleculares/metabolismo , Mutación/genética
11.
FASEB J ; 34(3): 4764-4782, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32027432

RESUMEN

Damage or degeneration of inner ear spiral ganglion neurons (SGNs) causes hearing impairment. Previous in vitro studies indicate that cochlear glial cells can be reprogrammed into SGNs, however, it remains unknown whether this can occur in vivo. Here, we show that neonatal glial cells can be converted, in vivo, into SGNs (defined as new SGNs) by simultaneous induction of Neurog1 (Ngn1) and Neurod1. New SGNs express SGN markers, Tuj1, Map2, Prox1, Mafb and Gata3, and reduce glial cell marker Sox10 and Scn7a. The heterogeneity within new SGNs is illustrated by immunostaining and transcriptomic assays. Transcriptomes analysis indicates that well reprogrammed SGNs are similar to type I SGNs. In addition, reprogramming efficiency is positively correlated with the dosage of Ngn1 and Neurod1, but declined with aging. Taken together, our in vivo data demonstrates the plasticity of cochlear neonatal glial cells and the capacity of Ngn1 and Neurod1 to reprogram glial cells into SGNs. Looking ahead, we expect that combination of Neurog1 and Neurod1 along with other factors will further boost the percentage of fully converted (Mafb+/Gata3+) new SGNs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/metabolismo , Animales , Secuencia de Bases , Técnica del Anticuerpo Fluorescente , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
J Cell Sci ; 129(8): 1531-6, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27084361

RESUMEN

Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process.


Asunto(s)
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/fisiología , Animales , Humanos , Metabolismo de los Lípidos , Fosforilación , Ubiquitinación
15.
J Cell Sci ; 125(Pt 24): 6157-65, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23097040

RESUMEN

Anionic phospholipids PI(4,5)P2 and phosphatidylserine (PS) are enriched in the cytosolic leaflet of the plasma membrane where endocytic sites form. In this study, we investigated the roles of PI(4,5)P2 and PS in clathrin-mediated endocytosis (CME) site initiation and vesicle formation in Saccharomyces cerevisiae. Live-cell imaging of endocytic protein dynamics in an mss4(ts) mutant, which has severely reduced PI(4,5)P2 levels, revealed that PI(4,5)P2 is required for endocytic membrane invagination but is less important for endocytic site initiation. We also demonstrated that, in various deletion mutants of genes encoding components of the Rcy1-Ypt31/32 GTPase pathway, endocytic proteins dynamically assemble not only on the plasma membrane but also on intracellular membrane compartments, which are likely derived from early endosomes. In rcy1Δ cells, fluorescent biosensors indicated that PI(4,5)P2 only localized to the plasma membrane while PS localized to both the plasma membrane and intracellular membranes. Furthermore, we found that polarized endocytic patch establishment is defective in the PS-deficient cho1Δ mutant. We propose that PS is important for directing endocytic proteins to the plasma membrane and that PI(4,5)P2 is required to facilitate endocytic membrane invagination.


Asunto(s)
Clatrina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endocitosis , Proteínas F-Box/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(44): E979-88, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22006337

RESUMEN

During endocytic vesicle formation, distinct subdomains along the membrane invagination are specified by different proteins, which bend the membrane and drive scission. Bin-Amphiphysin-Rvs (BAR) and Fer-CIP4 homology-BAR (F-BAR) proteins can induce membrane curvature and have been suggested to facilitate membrane invagination and scission. Two F-BAR proteins, Syp1 and Bzz1, are found at budding yeast endocytic sites. Syp1 arrives early but departs from the endocytic site before formation of deep membrane invaginations and scission. Using genetic, spatiotemporal, and ultrastructural analyses, we demonstrate that Bzz1, the heterodimeric BAR domain protein Rvs161/167, actin polymerization, and the lipid phosphatase Sjl2 cooperate, each through a distinct mechanism, to induce membrane scission in yeast. Additionally, actin assembly and Rvs161/167 cooperate to drive formation of deep invaginations. Finally, we find that Bzz1, acting at the invagination base, stabilizes endocytic sites and functions with Rvs161/167, localized along the tubule, to achieve proper endocytic membrane geometry necessary for efficient scission. Together, our results reveal that dynamic interplay between a lipid phosphatase, actin assembly, and membrane-sculpting proteins leads to proper membrane shaping, tubule stabilization, and scission.


Asunto(s)
Endocitosis , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
17.
bioRxiv ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39416225

RESUMEN

Understanding of the mechanisms that initiate clathrin-mediated endocytosis (CME) is incomplete. Recent studies in budding yeast identified the endocytic adaptor protein Yap1801/Yap1802 (budding yeast AP180) as a key CME factor that promotes CME initiation in daughter cells during polarized growth, but how Yap1801/2 is recruited preferentially to the plasma membrane of daughter cells is not clear. The only known cargos for Yap1801/2 in yeast are the synaptobrevins Snc1 and Snc2, which act as v-SNARES for exocytic vesicles arriving at the plasma membrane and are essential for polarized cell growth. In this study, we analyze the spatiotemporal dynamics of functional, fluorescently-tagged Snc1/2 expressed from their endogenous loci and provide evidence that, in concert with anionic phospholipids, Snc1/2 recruit Yap1801/2 preferentially to growing daughter cells. These findings suggest that the coincidence of anionic phospholipids and Snc1/2 facilitates CME initiation in growing daughter cells and directly links polarized CME to polarized secretion.

18.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38575019

RESUMEN

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Asunto(s)
Fertilizantes , Magnesio , Estruvita/química , Magnesio/química , Fertilizantes/análisis , Óxido de Magnesio , Fósforo/química , Carbón Orgánico/química , Suelo/química , Nitrógeno/análisis
19.
Sci Total Environ ; 948: 174956, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39053523

RESUMEN

Biochar exhibits numerous advantages in enhancing the soil environment despite a few limitations due to its lower surface energy. Nanomodified biochar combines the advantages of biochar and nanoscale materials. However, its effects on water infiltration and N leaching in a clayey soil remain unclear. Therefore, this study prepared rice straw nano-biochar by a ball milling method, and investigated its physicochemical properties and effects of bulk biochar and nano-biochar at various addition rates (0 %, 0.5 %, 1 %, 2 %, 3 %, and 5 %) on wetting peak migration, cumulative infiltration, water absorption and retention, and N leaching. The results showed that, compared with bulk biochar, nano-biochar presented a more abundant pore structure with an increase in specific surface area of approximately 1.5 times, accompanied by a 20 % increase in acid functional groups. Compared with those for clayey soil without biochar addition, the wetting front migration time was increased by 10.2 %-123.9 % and 17.0 %-257.9 %, and the cumulative infiltration volume at 60 min was decreased by 26.0 %-48.4 % and 14.1 %-62.4 % for bulk biochar and nano-biochar, respectively. The parameter S of Philip model and the parameter a of Kostiakov model for nano-biochar were lower than those for bulk biochar, whereas the parameter b of Kostiakov model was greater, indicating that nano-biochar decreased initial soil infiltration rate and increased attenuation degree of the infiltration rate. Nano-biochar increased water absorption by 8.03 % and subsequently enhanced water retention capacity relative to bulk biochar. In addition, bulk biochar and nano-biochar reduced NH4+-N leaching by 3.0 %-13.1 % and 5.7 %-39.2 %, respectively, and NO3--N leaching by 2.7 %-3.6 % and 9.0 %-43.3 %, respectively, by decreasing N concentration and leachate volume relative to those with no biochar addition. This study provides new knowledge for nano-biochar application in a clayey soil.


Asunto(s)
Carbón Orgánico , Arcilla , Nitrógeno , Oryza , Suelo , Carbón Orgánico/química , Suelo/química , Nitrógeno/análisis , Arcilla/química , Contaminantes del Suelo/análisis , Agua/química
20.
Brief Funct Genomics ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860675

RESUMEN

In recent years, the application of single-cell transcriptomics and spatial transcriptomics analysis techniques has become increasingly widespread. Whether dealing with single-cell transcriptomic or spatial transcriptomic data, dimensionality reduction and clustering are indispensable. Both single-cell and spatial transcriptomic data are often high-dimensional, making the analysis and visualization of such data challenging. Through dimensionality reduction, it becomes possible to visualize the data in a lower-dimensional space, allowing for the observation of relationships and differences between cell subpopulations. Clustering enables the grouping of similar cells into the same cluster, aiding in the identification of distinct cell subpopulations and revealing cellular diversity, providing guidance for downstream analyses. In this review, we systematically summarized the most widely recognized algorithms employed for the dimensionality reduction and clustering analysis of single-cell transcriptomic and spatial transcriptomic data. This endeavor provides valuable insights and ideas that can contribute to the development of novel tools in this rapidly evolving field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA