Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 250: 118470, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373548

RESUMEN

In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.


Asunto(s)
Compuestos Férricos , Sustancias Húmicas , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Sustancias Húmicas/análisis , Compuestos Férricos/química , Suelo/química , Metales Pesados/análisis , Microbiología del Suelo , Restauración y Remediación Ambiental/métodos , Agricultura/métodos
2.
Environ Sci Pollut Res Int ; 30(6): 16719-16728, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36512281

RESUMEN

Humic acid can effectively bind several metals and is regarded as a promising soil amendment. In this study, a novel synthetic humic-like acid (SHLA) was applied as a soil amendment to immobilize metals (Cu, Zn, Ni, As) in a contaminated agricultural soil (pH 6.17 ± 0.11; total organic carbon 5.91 ± 0.40%; Cu 302.86 ± 3.97 mg/kg; Zn 700.45 ± 14.30 mg/kg; Ni 140.16 ± 1.59 mg/kg). With increasing additions of SHLA from 0 to 10% (w/w), the soil pH constantly decreased from 6.17 ± 0.11 to 4.91 ± 0.10 (p < 0.001), while both total organic carbon (from 6.10 ± 0.12% to 10.55 ± 0.18%) and water-soluble carbon content (from 171.01 ± 10.15 mg/kg to 319.18 ± 20.74 mg/kg) of soil significantly increased (p < 0.001). Based on the results of 0.01 M CaCl2-extractable concentration of different metals, SHLA could lower the bioavailability of Cu (from 1.26 ± 0.04 mg/kg to 0.55 ± 0.05 mg/kg), Zn (from 6.74 ± 0.12 mg/kg to 3.26 ± 0.23 mg/kg), and Ni (from 5.16 ± 0.07 mg/kg to 0.12 ± 0.02 mg/kg), but increase the bioavailability of As (from 0.31 ± 0.02 to 1.83 ± 0.09 mg/kg). The immobilization mechanisms of metals in soils amended with SHLA involved surface complexation, electrostatic attraction, and cation-π interaction. Overall, SHLA shows great potential as a soil amendment for cationic heavy metal immobilization.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Sustancias Húmicas/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Carbono
3.
Artículo en Inglés | MEDLINE | ID: mdl-36612475

RESUMEN

The commonly used two-step and one-pot synthesis methods for producing biochar require the use of iron salt solutions, resulting in the undesirable consequences of energy consumption for dewatering and potential pollution risks. To address this drawback, a magnetic sewage sludge-derived biochar (MSBC-2) was synthesized by a solvent-free method in this study. The pseudo-second-order kinetic model and Langmuir model provided the best fit to the experimental data, implying a monolayered chemisorption process of Pb2+, Cd2+and Cu2+ onto MSBC-2. As the reaction temperature increased from 25 °C to 45 °C, the maximum adsorption capacities increased from 113.64 mg·g−1 to 151.52 mg·g−1 for Pb2+, from 101.01 mg·g−1 to 109.89 mg·g−1 for Cd2+ and from 57.80 mg·g−1 to 74.07 mg·g−1 for Cu2+, respectively. Thermodynamic parameters (ΔG0 < 0, ΔS0 > 0, ΔH0 > 0) revealed that the adsorption processes of all three metals by MSBC-2 were favourable, spontaneous and endothermic. Surface complexation, cation-π interaction, ion exchange and electrostatic attraction mechanisms were involved in the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2. Overall, this study will provide a new perspective for the synthesis of magnetic biochar and MSBC-2 shows great potential as an adsorbent for heavy metal removal.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Aguas Residuales , Aguas del Alcantarillado , Solventes , Cadmio , Plomo , Carbón Orgánico , Adsorción , Cinética , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA