Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(1): 168-184, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37974400

RESUMEN

Circular mRNA (cmRNA) is particular useful due to its high resistance to degradation by exonucleases, resulting in greater stability and protein expression compared to linear mRNA. T cell receptor (TCR)-engineered T cells (TCR-T) represent a promising means of treating viral infections and cancer. This study aimed to evaluate the feasibility and efficacy of cmRNA in antigen-specific-TCR discovery and TCR-T therapy. Using human cytomegalovirus (CMV) pp65 antigen as a model, we found that the expansion of pp65-responsive T cells was induced more effectively by monocyte-derived dendritic cells transfected with pp65-encoding cmRNA compared with linear mRNA. Subsequently, we developed cmRNA-transduced pp65-TCR-T (cm-pp65-TCR-T) that specifically targets the CMV-pp65 epitope. Our results showed that pp65-TCR could be expressed on primary T cells for more than 7 days. Moreover, both in vitro killing and in vivo CDX models demonstrated that cm-pp65-TCR-T cells specifically and persistently kill pp65-and HLA-expressing tumor cells, significantly prolonging the survival of mice. Collectively, our results demonstrated that cmRNA can be used as a more effective technical approach for antigen-specific TCR isolation and identification, and cm-pp65-TCR-T may provide a safe, non-viral, non-integrated therapeutic approach for controlling CMV infection, particularly in patients who have undergone allogeneic hematopoietic stem cell transplantation.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Humanos , Animales , Ratones , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/terapia , Citomegalovirus/genética , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Proteínas de la Matriz Viral/genética
2.
J Am Chem Soc ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816747

RESUMEN

Lithium metal batteries face problems from sluggish charge transfer at interfaces, as well as parasitic reactions between lithium metal anodes and electrolytes, due to the strong electronegativity of oxygen donor solvents. These factors constrain the reversibility and kinetics of lithium metal batteries at low temperatures. Here, a nonsolvating cosolvent is applied to weaken the electronegativity of donor oxygen in ether solvents, enabling the participation of anionic donors in the solvation structure of Li+. This strategy significantly accelerates the desolvation process of Li+ and reduces the side effects of solvents on interfacial transport and stability. The designed anion-aggregated electrolyte has a unique temperature-insensitive solvation structure and enables lithium metal anodes to achieve a high average Coulombic efficiency at room temperature and -20 °C. A high-loading LiFePO4||Li cell exhibited high reversibility with a 100% capacity retention after 150 cycles at room temperature, -20, and -40 °C. The practical 1 Ah-level LiFePO4||Li pouch-cell delivered 81% and 61% of the capacity at room temperature when charged and discharged at -20 and -40 °C, respectively. This strategy of constructing temperature-insensitive solvation by electronegativity regulation offers a novel approach for developing electrolytes of low-temperature batteries.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38572719

RESUMEN

PURPOSE: This study was designed to conduct pooled comparisons of the relative clinical efficacy and safety of computed tomography (CT)-guided localization for pulmonary nodules (PNs) using either coil- or liquid material-based approaches. MATERIAL AND METHODS: Relevant articles published as of July 2023 were identified in the Web of Science, PubMed, and Wanfang databases, and pooled analyses of relevant endpoints were then conducted. RESULTS: Six articles that enrolled 287 patients (341 PNs) and 247 patients (301 PNs) that had respectively undergone CT-guided localization procedures using coil- and liquid material-based approaches prior to video-assisted thoracic surgery (VATS) were included in this meta-analysis. The liquid material group exhibited a significantly higher pooled successful localization rate as compared to the coil group (p = 0.01), together with significantly lower pooled total complication rates (p = 0.0008) and pneumothorax rates (p = 0.01). Both groups exhibited similar rates of pulmonary hemorrhage (p = 0.44) and successful wedge resection (p = 0.26). Liquid-based localization was also associated with significant reductions in pooled localization and VATS procedure durations (p = 0.004 and 0.007). CONCLUSIONS: These data are consistent with CT-guided localization procedures performed using liquid materials being safer and more efficacious than coil-based localization in patients with PNs prior to VATS resection.

4.
Small ; 19(14): e2206262, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36642832

RESUMEN

The upsurge of new materials that can be used for near-infrared (NIR) photodetectors operated without cooling is crucial. As a novel material with a small bandgap of ≈0.28 eV, the topological crystalline insulator SnTe has attracted considerable attention. Herein, this work demonstrates self-driven NIR photodetectors based on SnTe/Si and SnTe:Si/Si heterostructures. The SnTe/Si heterostructure has a high detectivity D* of 3.3 × 1012 Jones. By Si doping, the SnTe:Si/Si heterostructure reduces the dark current density and increases the photocurrent by ≈1 order of magnitude simultaneously, which improves the detectivity D* by ≈2 orders of magnitude up to 1.59 × 1014 Jones. Further theoretical analysis indicates that the improved device performance may be ascribed to the bulk photovoltaic effect (BPVE), in which doped Si atoms break the inversion symmetry and thus enable the generation of additional photocurrents beyond the heterostructure. In addition, the external quantum efficiency (EQE) measured at room temperature at 850 nm increases by a factor of 7.5 times, from 38.5% to 289%. A high responsivity of 1979 mA W-1 without bias and fast rising time of 8 µs are also observed. The significantly improved photodetection achieved by the Si doping is of great interest and may provide a novel strategy for superior photodetectors.

5.
Mol Ecol ; 32(23): 6294-6303, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35770463

RESUMEN

To understand soil biodiversity we need to know how soil communities are assembled. However, the relationship between soil community assembly and environmental factors, and the linkages between soil microbiota taxonomic groups and their body sizes, remain unexplored in tropical seasonal rainforests. Systematic and stratified random sampling was used to collect 243 soil and organism samples across a 20-ha plot in a tropical seasonal rainforest in southwestern China. High-throughput sequencing, variation analysis and principal coordinates of neighbourhood matrices were performed. Soil community composition, spatial distribution and assembly processes based on propagule size (including archaea, bacteria, fungi and nematodes) were investigated. The results showed that: (i) the community assembly of small soil microorganisms (bacteria, fungi) was mostly influenced by stochastic processes while that of larger soil organisms (nematodes) was more deterministic; (ii) the independent effects of habitat (including soil and topographic variables) and its interaction with plant attributes for community structure significantly decreased with increasing body size; and (iii) plant leaf phosphorus directly influenced the spatial distribution of soil-available phosphorus, which indicates their indirect impact on the assembly of the soil communities. Our data suggest that the assembly of multitrophic soil communities can be explained to some extent by changes in above-ground plant attributes. This highlights the importance of above- and below-ground linkages in influencing multitrophic soil microbiota community assembly.


Asunto(s)
Microbiota , Bosque Lluvioso , Suelo/química , Estaciones del Año , Plantas/microbiología , Biodiversidad , Microbiota/genética , Bacterias/genética , Hongos/genética , Tamaño Corporal , Microbiología del Suelo , Fósforo
6.
Small ; 18(25): e2202349, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35616012

RESUMEN

Lithium metal is an ideal electrode material for future rechargeable batteries. However, dendrite formation and unstable solid electrolyte interphase film lead to safety concerns and poor Coulombic efficiency (CE). LiNO3 significantly improves the performance of the lithium metal anode in ester electrolytes but its use is restricted by low solubility. To increase the content of LiNO3 in the cell, a poly-(vinyl carbonate) organogel interlayer containing dissociated LiNO3 (LNO-PVC) is placed between the cathode and anode. The dissociated LiNO3 effectively increases the LiNO3 -release rate and compensates for the LiNO3 consumed in ester electrolytes during cycling. Via this interlayer, the performance of the lithium metal anode is significantly improved. The average CE of a Li-Cu cell reaches 98.6% at 0.5 mA cm-2 -1 h and 98.5% at 1 mA cm-2 -1 h for 300 cycles. Also, a Li||NCM811 pouch cell with LNO-PVC interlayer can also reach a 400 Wh kg-1 energy density with a cycling life of 65 cycles. This strategy sheds light on the effect of the state of this salt on its release/dissolution kinetics, which is determined by the interactions between the salt and host material.

7.
BMC Neurosci ; 23(1): 79, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575370

RESUMEN

Infant emotional stimuli can preferentially engage adults' attention and provide valuable information essential for successful interaction between adults and infants. Exploring the neural processes of recognizing infant stimuli promotes better understandings of the mother-infant attachment mechanisms. Here, combining task-functional magnetic resonance imaging (Task-fMRI) and resting-state fMRI (rs-fMRI), we investigated the effects of infants' faces on the brain activity of adults. Two groups including 26 women and 25 men were recruited to participate in the current study. During the task-fMRI, subjects were exposed to images of infant emotional faces (including happy, neutral, and sad) randomly. We found that the brains of women and men reacted differently to infants' faces, and these differential areas are in facial processing, attention, and empathetic networks. The rs-fMRI further showed that the connectivity of the default-mode network-related regions increased in women than in men. Additionally, brain activations in regions related to emotional networks were associated with the empathetic abilities of women. These differences in women might facilitate them to more effective and quick adjustments in behaviors and emotions during the nurturing infant period. The findings provide special implications and insights for understanding the neural processing of reacting to infant cues in adults.


Asunto(s)
Encéfalo , Emociones , Masculino , Adulto , Humanos , Lactante , Femenino , Factores Sexuales , Emociones/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Atención/fisiología , Imagen por Resonancia Magnética , Expresión Facial
8.
Chem Soc Rev ; 50(5): 3178-3210, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33480899

RESUMEN

Lithium (Li) is the lightest and most electronegative metallic element and has been considered the ultimate anode choice for energy storage systems with high energy density. However, uncontrollable dendrite formation caused by high ion transfer resistance and low Li atom diffusion, and dendrite growth with large volume expansion and high electronegative activity, result in severe safety concerns and poor coulombic efficiency. In this review, the latest progress is presented from the viewpoint of dendrite evolution (from dendrite formation to growth) as the main line to understand the factors that influence the deposition chemistry. For the dendrite formation, specific attention is focused on the four distinct but interdependent factors: (a) how the dielectric constant, donor number, viscosity and salt concentration affect the movement of solvated Li+ in nonaqueous electrolyte. (b) The effect of non-polar solvents and anions with polar groups or high concentration on the Li+ desolvation step. (c) The effect of the formation of solid electrolyte interphase (SEI), along with its specific adsorption and solvated structure, and its physical structure, chemical composition and growth thickness on Li+ diffusion. (d) The effect of the diffusion coefficient of the host material on Li atom migration. After dendrite formation, the attention is focused on two detrimental factors together with dendrite growth: (e) low coulombic efficiency; (f) large volume expansion. Correspondingly, the emphasis is placed on reducing the side reactions and minimizing the volume expansion. Conclusions and perspectives on the current limitations and future research directions are recommended. It is anticipated that the dynamic dendrite evolution can provide fresh insight into similar electrochemical reaction processes of other anode chemistries in nonaqueous electrolytes, ranging from a conversion-reaction metal anode (Li, Na, Al) and an alloying anode (LiAlx, NaAlx) to an intercalation-based anode (graphite, TiS2), as well as aqueous, ionic liquid and flow redox battery systems.

9.
Nano Lett ; 21(1): 723-730, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33373246

RESUMEN

Transistor-based memories are of particular significance in the pursuit of next-generation nonvolatile memories. The charge storage medium in a transistor-based memory is pivotal to the device performance. In this report, nitrogen doping titania nanocrystals (N-TiO2 NCs) synthesized through a low-temperature nonhydrolytic method are used as the charge storage medium in a graphene transistor-based memory. The decoration of the N-TiO2 NCs enables the device to perform as an ultraviolet (UV) light-programmable nonvolatile optoelectronic memory. Multilevel nonvolatile information recording can be realized through accurate control of the incident light dose, which is ascribed to the vast and firm hole trapping abilities of the N-TiO2 NCs induced by the N dopant. Accordingly, a positive gate voltage can be used to erase the programmed state by promoting the recombination of stored holes in N-TiO2 NCs. This study manifests the importance of trap engineering for information storage and provides an alternative path toward nonvolatile optoelectronic memory.

10.
J Org Chem ; 86(23): 17265-17273, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34792363

RESUMEN

A new and practical protocol for the synthesis of medicinally privileged azolo[1,3,5]triazines by simply heating under air has been presented. The in situ generated N-azolo amidines from commercially available aromatic aldehydes and 3-aminoazoles with ammonium iodide undergo the second diamination to accomplish the [3 + 1 + 1 + 1] heteroannulation reaction. This convenient process is appreciated by high efficiency, broad substrate scope, gram-scale synthesis, and operational simplicity under reagent-free conditions.


Asunto(s)
Aldehídos , Triazinas , Amidinas , Compuestos de Amonio , Indicadores y Reactivos
11.
Angew Chem Int Ed Engl ; 60(34): 18448-18453, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34018293

RESUMEN

Large-scale implementation of all-solid-state lithium batteries is impeded by the physical limitations of the interface between the electrode and solid electrolyte; specifically, high resistance and poor stability, as well as poor compatibility with Li+ migration. We report double ionic-electronic transfer interface layers grown at electrode-electrolyte interfaces by in situ polymerization of 2,2'-bithiophene in polyethylene oxide (PEO) electrolyte. For all-solid-state LiFePO4 ∥PT-PEO-PT∥Li cells, the formation of a conductive polythiophene (PT) layer at the cathode-electrolyte interface resulted in an at least sevenfold decrease in interface resistance, and realized a capacity retention of about 94 % after 1000 cycles along with a lower polarization voltage under a rate of 2 C. The mixed ionic-electronic conductive layers imparted superior interface stability and contact while keeping good compatibility with the Li anode.

12.
Sensors (Basel) ; 20(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679816

RESUMEN

Seed crystals are the prerequisite for the growth of high quality and large size aluminum nitride (AlN) single crystal boules. The physical vapor transport (PVT) method is adopted to grow AlN seed crystal. However, this method is not available in nature. Herein, the temperature field distribution in the PVT furnace was simulated using the numerical analysis method to obtain free-standing and large-size seeds. The theoretical studies indicate that the temperature distribution in the crucible is related to the crucible height. According to the theory of growth dynamics and growth surface dynamics, the optimal thermal distribution was achieved through the design of a specific crucible structure, which is determined by the ratio of top-heater power to main-heater power. Moreover, in our experiment, a sole AlN single crystal seed with a length of 12 mm was obtained on the tungsten (W) substrate. The low axial temperature gradient between material source and substrate can decrease the nucleation rate and growth rate, and the high radial temperature gradient of the substrate can promote the expansion of crystal size. Additionally, the crystallinity of the crystals grown under different thermal field conditions are analyzed and compared. The Raman results manifest the superiority of the thermal inversion method in the growth of high quality AlN single crystal.

13.
Small ; 15(1): e1804156, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30480357

RESUMEN

A nonvolatile memory with a floating gate structure is fabricated using ZnSe@ZnS core-shell quantum dots as discrete charge-trapping/tunneling centers. Systematical investigation reveals that the spontaneous recovery of the trapped charges in the ZnSe core can be effectively avoided by the type-I energy band structure of the quantum dots. The surface oleic acid ligand surrounding the quantum dots can also play a role of energy barrier to prevent unintentional charge recovery. The device based on the quantum dots demonstrates a large memory window, stable retention, and good endurance. What is more, integrating charge-trapping and tunneling components into one quantum dot, which is solution synthesizable and processible, can largely simplify the processing of the floating gate nonvolatile memory. This research reveals the promising application potential of type-I core-shell nanoparticles as the discrete charge-trapping/tunneling centers in nonvolatile memory in terms of performance, cost, and flexibility.

14.
Small ; 15(32): e1900687, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30972975

RESUMEN

Rechargeable batteries are considered promising replacements for environmentally hazardous fossil fuel-based energy technologies. High-energy lithium-metal batteries have received tremendous attention for use in portable electronic devices and electric vehicles. However, the low Coulombic efficiency, short life cycle, huge volume expansion, uncontrolled dendrite growth, and endless interfacial reactions of the metallic lithium anode are major obstacles in their commercialization. Extensive research efforts have been devoted to address these issues and significant progress has been made by tuning electrolyte chemistry, designing electrode frameworks, discovering nanotechnology-based solutions, etc. This Review aims to provide a conceptual understanding of the current issues involved in using a lithium metal anode and to unveil its electrochemistry. The most recent advancements in lithium metal battery technology are outlined and suggestions for future research to develop a safe and stable lithium anode are presented.

15.
Molecules ; 24(8)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010239

RESUMEN

In this report, the development of physical vapor transport (PVT) methods for bulk aluminum nitride (AlN) crystal growth is reviewed. Three modified PVT methods with different features including selected growth at a conical zone, freestanding growth on a perforated sheet, and nucleation control with an inverse temperature gradient are discussed and compared in terms of the size and quality of the bulk AlN crystals they can produce as well as the process complexity. The PVT method with an inverse temperature gradient is able to significantly reduce the nucleation rate and realize the dominant growth of only one bulk AlN single crystal, and thus grow centimeter-sized bulk AlN single crystals. X-ray rocking curve (XRC) and Raman spectroscopy measurements showed a high crystalline quality of the prepared AlN crystals. The inverse temperature gradient provides an efficient and relatively low-cost method for the preparation of large-sized and high-quality AlN seed crystals used for seeded growth, devoted to the diameter enlargement and quality improvement of bulk AlN single crystals.


Asunto(s)
Cristalización/métodos , Gases/química , Compuestos de Aluminio/química , Tamaño de la Partícula , Espectrometría Raman , Temperatura
16.
Angew Chem Int Ed Engl ; 58(35): 11978-11996, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-30687993

RESUMEN

Aluminum battery systems are considered as a system that could supplement current lithium batteries due to the low cost and high volumetric capacity of aluminum metal, and the high safety of the whole battery system. However, first the use of ionic liquid electrolytes leading to AlCl4 - instead of Al3+ , the different intercalation reagents, the sluggish solid diffusion process and the fast capacity fading during cycling in aluminum batteries all need to be thoroughly explored. To provide a good understanding of the opportunities and challenges of the newly emerging aluminum batteries, this Review discusses the reaction mechanisms and the difficulties caused by the trivalent reaction medium in electrolytes, electrodes, and electrode-electrolyte interfaces. It is hoped that the Review will stimulate scientists and engineers to develop more reliable aluminum batteries.

17.
Small ; 14(12): e1703077, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29436109

RESUMEN

Plasmonic gold nanorods (Au NRs)-copper sulfide heterostructures have recently attracted much attention owing to the synergistically enhanced photothermal properties. However, the facile synthesis and interface tailoring of Au NRs-copper sulfide heterostructures remain a formidable challenge. In this study, the rational design and synthesis of Au NRs-Cu7 S4 heterostructures via a one-pot hydrothermal process is reported. Specifically, core-shell and dumbbell-like Au NRs-Cu7 S4 heterostructures are obtained with well-controlled interfaces by employing the Au NRs with different aspect ratios. Both core-shell and dumbbell-like Au NRs-Cu7 S4 have proven effective as photothermal therapy agents, which offer both high photothermal stability and significant photothermal conversion efficiency up to 62%. The finite-difference time domain simulation results confirm the coupling effect that leads to the enhanced local field as well as the optical absorption at the heterostructure interface. Importantly, these Au NRs-Cu7 S4 heterostructures can be compatibly used as an 808 nm laser-driven photothermal therapy agents for the efficient photothermal therapy of cancer cells in vitro. This study will provide new insight into the design of other noble metal-semiconductor heterostructures for a broad range of applications utilizing surface plasmon resonance enhancement phenomena.

18.
Chemistry ; 24(69): 18180-18203, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30328219

RESUMEN

Solid polymer electrolytes are of rapidly increasing importance for the research and development of future safe batteries with high energy density. The diversified chemistry and structures of polymers allow the utilization of a wide range of soft structures for all-polymer solid-state electrolytes. With equal importance is the hybrid solid-state electrolytes consisting of both "soft" polymeric structure and "hard" inorganic nanofillers. The recent emergence of the re-discovery of many two-dimensional layered materials has stimulated the booming of advanced research in energy storage fields, such as batteries, supercapacitors, and fuel cells. Of special interest is the mass transport properties of these 2D nanostructures for water, gas, or ions. This review aims at the current progress and prospective development of hybrid polymer-inorganic solid electrolytes based on important 2D materials, including natural clay and synthetic lamellar structures. The ion conduction mechanism and the fabrication, property and device performance of these hybrid solid electrolytes will be discussed.

19.
Oecologia ; 188(2): 537-546, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29998401

RESUMEN

Color lightness of insects is an important ecological trait affecting their performance through multiple functions such as thermoregulation, UV protection and disease resistance. The geographical pattern of color lightness in diurnal insects are relatively well understood and largely driven by thermal melanism through the enhancement of insect activity. In nocturnal insects, however, the ecological function of color lightness in response to climatic factors is poorly understood, particularly at small spatial scales. In this study, we investigated color lightness of nocturnal moth assemblages along environmental gradients. Using geometrid moths collected with comparable methodologies (light trapping), we examined assemblage-level changes in color lightness across elevational gradients and vertical strata (canopy vs understory) across three climatically different locations in Yunnan, China. The results showed that moths are darker in color at higher elevations. Such patterns are most apparent in canopy assemblages. In addition, the strength of the elevational pattern on color lightness varied across location, being most pronounced in the canopy of the subalpine site. These patterns are likely driven by UV protection and/or thermoregulation. Our study highlights the importance of abiotic factors such as temperature and solar radiation in structuring morphological patterns of nocturnal ectothermic assemblages along elevational gradients of climatically harsh environments.


Asunto(s)
Mariposas Nocturnas , Animales , China , Clima , Color , Geografía
20.
Angew Chem Int Ed Engl ; 57(7): 1898-1902, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29276817

RESUMEN

The electrochemical performance of the aluminum-sulfur (Al-S) battery has very poor reversibility and a low charge/discharge current density owing to slow kinetic processes determined by an inevitable dissociation reaction from Al2 Cl7- to free Al3+ . Al2 Cl6 Br- was used instead of Al2 Cl7- as the dissociation reaction reagent. A 15-fold faster reaction rate of Al2 Cl6 Br- dissociation than that of Al2 Cl7- was confirmed by density function theory calculations and the Arrhenius equation. This accelerated dissociation reaction was experimentally verified by the increase of exchange current density during Al electro-deposition. Using Al2 Cl6 Br- instead of Al2 Cl7- , a kinetically accelerated Al-S battery has a sulfur utilization of more than 80 %, with at least four times the sulfur content and five times the current density than that of previous work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA