Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673799

RESUMEN

Over 32,000 individuals succumb to snake envenoming in sub-Saharan Africa (sSA) annually. This results from several factors, including a lack of antivenom products capable of neutralising the venoms of diverse snake species in this region. Most manufacturers produce polyvalent antivenoms targeting 3 to 16 clinically important snake species in sSA. However, specific products are unavailable for many others, especially those with a restricted geographic distribution. While next-generation antivenoms, comprising a cocktail of broadly neutralising antibodies, may offer an effective solution to this problem, given the need for their clinical validation, recombinant antivenoms are far from being available to snakebite victims. One of the strategies that could immediately address this issue involves harnessing the cross-neutralisation potential of existing products. Therefore, we assessed the neutralisation potency of PANAF-Premium antivenom towards the venoms of 14 medically important snakes from 13 countries across sSA for which specific antivenom products are unavailable. Preclinical assays in a murine model of snake envenoming revealed that the venoms of most snake species under investigation were effectively neutralised by this antivenom. Thus, this finding highlights the potential use of PANAF-Premium antivenom in treating bites from diverse snakes across sSA and the utility of harnessing the cross-neutralisation potential of antivenoms.


Asunto(s)
Antivenenos , Mordeduras de Serpientes , Venenos de Serpiente , Antivenenos/farmacología , Antivenenos/inmunología , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Animales , África del Sur del Sahara , Ratones , Venenos de Serpiente/inmunología , Serpientes , Anticuerpos Neutralizantes/inmunología , Humanos , Modelos Animales de Enfermedad
2.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958636

RESUMEN

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Asunto(s)
Evolución Molecular , Neurotoxinas/genética , Poliaminas/química , Arañas/genética , Secuencia de Aminoácidos/genética , Animales , Australia , Secuencia Conservada/genética , Femenino , Humanos , Masculino , Ratones , Neurotoxinas/química , Neurotoxinas/metabolismo , Péptidos/genética , Filogenia , Poliaminas/metabolismo , Conducta Sexual Animal/fisiología , Venenos de Araña/genética , Arañas/patogenicidad , Transcriptoma/genética , Vertebrados/genética , Vertebrados/fisiología
3.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298463

RESUMEN

The socioeconomic impact of snakebites in India is largely attributed to a subset of snake species commonly known as the 'big four'. However, envenoming by a range of other clinically important yet neglected snakes, a.k.a. the 'neglected many', also adds to this burden. The current approach of treating bites from these snakes with the 'big four' polyvalent antivenom is ineffective. While the medical significance of various species of cobras, saw-scaled vipers, and kraits is well-established, the clinical impact of pit vipers from regions such as the Western Ghats, northeastern India, and the Andaman and Nicobar Islands remains poorly understood. Amongst the many species of snakes found in the Western Ghats, the hump-nosed (Hypnale hypnale), Malabar (Craspedocephalus malabaricus), and bamboo (Craspedocephalus gramineus) pit vipers can potentially inflict severe envenoming. To evaluate the severity of toxicity inflicted by these snakes, we characterised their venom composition, biochemical and pharmacological activities, and toxicity- and morbidity-inducing potentials, including their ability to damage kidneys. Our findings highlight the therapeutic inadequacies of the Indian and Sri Lankan polyvalent antivenoms in neutralising the local and systemic toxicity resulting from pit viper envenomings.


Asunto(s)
Crotalinae , Mordeduras de Serpientes , Viperidae , Animales , Antivenenos/uso terapéutico , Mordeduras de Serpientes/tratamiento farmacológico , Venenos de Víboras
4.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31772017

RESUMEN

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Asunto(s)
Euterios , Evolución Molecular , Genoma/genética , Musarañas , Ponzoñas/genética , Animales , Euterios/clasificación , Euterios/genética , Euterios/fisiología , Duplicación de Gen , Masculino , Filogenia , Proteómica , Musarañas/clasificación , Musarañas/genética , Musarañas/fisiología , Calicreínas de Tejido/genética
5.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361863

RESUMEN

Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.


Asunto(s)
Venenos de Araña , Arañas , Animales , Humanos , Venenos de Araña/toxicidad , Venenos de Araña/química , Árboles , Australia , Péptidos
6.
BMC Biol ; 16(1): 108, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30261880

RESUMEN

BACKGROUND: Cnidocytes are specialized cells that define the phylum Cnidaria. They possess an "explosive" organelle called cnidocyst that is important for prey capture and anti-predator defense. An extraordinary morphological and functional complexity of the cnidocysts has inspired numerous studies to investigate their structure and development. However, the transcriptomes of the cells bearing these unique organelles are yet to be characterized, impeding our understanding of the genetic basis of their biogenesis. RESULTS: In this study, we generated a nematocyte reporter transgenic line of the sea anemone Nematostella vectensis using the CRISPR/Cas9 system. By using a fluorescence-activated cell sorter (FACS), we have characterized cell type-specific transcriptomic profiles of various stages of cnidocyte maturation and showed that nematogenesis (the formation of functional cnidocysts) is underpinned by dramatic shifts in the spatiotemporal gene expression. Among the genes identified as upregulated in cnidocytes were Cnido-Jun and Cnido-Fos1-cnidarian-specific paralogs of the highly conserved c-Jun and c-Fos proteins of the stress-induced AP-1 transcriptional complex. The knockdown of the cnidocyte-specific c-Jun homolog by microinjection of morpholino antisense oligomer results in disruption of normal nematogenesis. CONCLUSIONS: Here, we show that the majority of upregulated genes and enriched biochemical pathways specific to cnidocytes are uncharacterized, emphasizing the need for further functional research on nematogenesis. The recruitment of the metazoan stress-related transcription factor c-Fos/c-Jun complex into nematogenesis highlights the evolutionary ingenuity and novelty associated with the formation of these highly complex, enigmatic, and phyletically unique organelles. Thus, we provide novel insights into the biology, development, and evolution of cnidocytes.


Asunto(s)
Nematocisto/embriología , Anémonas de Mar/embriología , Anémonas de Mar/genética , Factores de Transcripción/genética , Transcriptoma , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Nematocisto/metabolismo , Factores de Transcripción/metabolismo
7.
J Mol Evol ; 86(7): 484-500, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30066019

RESUMEN

Hymenopteran insects are infamous for their sting, and their ability to cause severe anaphylaxis and in some cases death. This allergic reaction is a result of allergens present in the venom. Hymenopterans have many common venom allergens, the most widespread of which include phospholipase A1, phospholipase A2, acid phosphatase, hyaluronidase, serine protease and antigen 5. While there have been studies that look at the phylogenetic histories of allergens within closely related species, to our knowledge, this is the first study using evolutionary analyses to compare across Hymenoptera the types of selection that are occurring on allergens. This research examined the publicly available sequences of six different groups of allergens and found that allergens had diverged and formed closely related clades which share greater sequence similarities. We also analysed the patterns of selection and found that they are predominately under the influence of negative selection.


Asunto(s)
Himenópteros/genética , Himenópteros/metabolismo , Ponzoñas/genética , Alérgenos/inmunología , Animales , Bases de Datos Genéticas , Evolución Molecular , Filogenia , Ponzoñas/inmunología
8.
PLoS Genet ; 11(10): e1005596, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26492532

RESUMEN

Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a 'two-speed' mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species-the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia-the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal venoms.


Asunto(s)
Secuencia de Aminoácidos/genética , Evolución Molecular , Transcriptoma/genética , Ponzoñas/genética , Animales , Venenos de Artrópodos/genética , Filogenia , Arañas
9.
Proc Natl Acad Sci U S A ; 112(38): 11911-6, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26372961

RESUMEN

The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na(+)/K(+)-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na(+)/K(+)-ATPase H1-H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na(+)/K(+)-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses.


Asunto(s)
Glicósidos Cardíacos/toxicidad , Evolución Molecular , Bufanólidos/química , Bufanólidos/toxicidad , Punto Isoeléctrico , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
10.
Mol Biol Evol ; 32(6): 1598-610, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25757852

RESUMEN

Despite Cnidaria (sea anemones, corals, jellyfish, and hydroids) being the oldest venomous animal lineage, structure-function relationships, phyletic distributions, and the molecular evolutionary regimes of toxins encoded by these intriguing animals are poorly understood. Hence, we have comprehensively elucidated the phylogenetic and molecular evolutionary histories of pharmacologically characterized cnidarian toxin families, including peptide neurotoxins (voltage-gated Na(+) and K(+) channel-targeting toxins: NaTxs and KTxs, respectively), pore-forming toxins (actinoporins, aerolysin-related toxins, and jellyfish toxins), and the newly discovered small cysteine-rich peptides (SCRiPs). We show that despite long evolutionary histories, most cnidarian toxins remain conserved under the strong influence of negative selection-a finding that is in striking contrast to the rapid evolution of toxin families in evolutionarily younger lineages, such as cone snails and advanced snakes. In contrast to the previous suggestions that implicated SCRiPs in the biomineralization process in corals, we demonstrate that they are potent neurotoxins that are likely involved in the envenoming function, and thus represent the first family of neurotoxins from corals. We also demonstrate the common evolutionary origin of type III KTxs and NaTxs in sea anemones. We show that type III KTxs have evolved from NaTxs under the regime of positive selection, and likely represent a unique evolutionary innovation of the Actinioidea lineage. We report a correlation between the accumulation of episodically adaptive sites and the emergence of novel pharmacological activities in this rapidly evolving neurotoxic clade.


Asunto(s)
Venenos de Cnidarios/genética , Evolución Molecular , Neurotoxinas/genética , Potasio/química , Anémonas de Mar/genética , Sodio/química , Secuencia de Aminoácidos , Animales , Clonación Molecular , Venenos de Cnidarios/química , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Neurotoxinas/química , Filogenia , Conformación Proteica , Anémonas de Mar/clasificación , Anémonas de Mar/metabolismo
11.
Mol Cell Proteomics ; 12(3): 651-63, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23242553

RESUMEN

Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecule's surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands.


Asunto(s)
Evolución Molecular , Metaloproteasas/genética , Precursores de Proteínas/genética , Venenos de Serpiente/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Metaloproteasas/clasificación , Metaloproteasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Antagonistas Nicotínicos/farmacología , Péptidos/farmacología , Filogenia , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína , Receptores Nicotínicos/metabolismo , Selección Genética , Homología de Secuencia de Aminoácido , Venenos de Serpiente/clasificación , Venenos de Serpiente/enzimología , Especificidad de la Especie , Receptor Nicotínico de Acetilcolina alfa 7
12.
Mol Cell Proteomics ; 12(7): 1881-99, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23547263

RESUMEN

Although it has been established that all toxicoferan squamates share a common venomous ancestor, it has remained unclear whether the maxillary and mandibular venom glands are evolving on separate gene expression trajectories or if they remain under shared genetic control. We show that identical transcripts are simultaneously expressed not only in the mandibular and maxillary glands, but also in the enigmatic snake rictal gland. Toxin molecular frameworks recovered in this study were three-finger toxin (3FTx), CRiSP, crotamine (beta-defensin), cobra venom factor, cystatin, epididymal secretory protein, kunitz, L-amino acid oxidase, lectin, renin aspartate protease, veficolin, and vespryn. We also discovered a novel low-molecular weight disulfide bridged peptide class in pythonid snake glands. In the iguanian lizards, the most highly expressed are potentially antimicrobial in nature (crotamine (beta-defensin) and cystatin), with crotamine (beta-defensin) also the most diverse. However, a number of proteins characterized from anguimorph lizards and caenophidian snakes with hemotoxic or neurotoxic activities were recruited in the common toxicoferan ancestor and remain expressed, albeit in low levels, even in the iguanian lizards. In contrast, the henophidian snakes express 3FTx and lectin toxins as the dominant transcripts. Even in the constricting pythonid and boid snakes, where the glands are predominantly mucous-secreting, low-levels of toxin transcripts can be detected. Venom thus appears to play little role in feeding behavior of most iguanian lizards or the powerful constricting snakes, and the low levels of expression argue against a defensive role. However, clearly the incipient or secondarily atrophied venom systems of these taxa may be a source of novel compounds useful in drug design and discovery.


Asunto(s)
Lagartos/genética , Serpientes/genética , Ponzoñas/genética , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Transcriptoma , Ponzoñas/química
13.
BMC Genomics ; 15: 177, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24593665

RESUMEN

BACKGROUND: Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. RESULTS: Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. CONCLUSIONS: Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.


Asunto(s)
Familia de Multigenes , Venenos de Araña/genética , Secuencia de Aminoácidos , Animales , Australia , Codón , Secuencia Conservada , Evolución Molecular , Femenino , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Péptidos/química , Péptidos/genética , Filogenia , Posición Específica de Matrices de Puntuación , Conformación Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Alineación de Secuencia , Venenos de Araña/química , Arañas/clasificación , Arañas/genética
14.
Sci Transl Med ; 16(735): eadk1867, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381847

RESUMEN

Snakebite envenoming is a major global public health concern for which improved therapies are urgently needed. The antigenic diversity present in snake venom toxins from various species presents a considerable challenge to the development of a universal antivenom. Here, we used a synthetic human antibody library to find and develop an antibody that neutralizes long-chain three-finger α-neurotoxins produced by numerous medically relevant snakes. Our antibody bound diverse toxin variants with high affinity, blocked toxin binding to the nicotinic acetylcholine receptor in vitro, and protected mice from lethal venom challenge. Structural analysis of the antibody-toxin complex revealed a binding mode that mimics the receptor-toxin interaction. The overall workflow presented is generalizable for the development of antibodies that target conserved epitopes among antigenically diverse targets, and it offers a promising framework for the creation of a monoclonal antibody-based universal antivenom to treat snakebite envenoming.


Asunto(s)
Antivenenos , Mordeduras de Serpientes , Humanos , Animales , Ratones , Antivenenos/química , Mordeduras de Serpientes/tratamiento farmacológico , Neurotoxinas/toxicidad , Anticuerpos ampliamente neutralizantes , Venenos de Serpiente
15.
Mol Biol Evol ; 29(7): 1807-22, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22319140

RESUMEN

Cysteine-rich secretory proteins (CRISPs) are glycoproteins found exclusively in vertebrates and have broad diversified functions. They are hypothesized to play important roles in mammalian reproduction and in reptilian venom, where they disrupt homeostasis of the prey through several mechanisms, including among others, blockage of cyclic nucleotide-gated and voltage-gated ion channels and inhibition of smooth muscle contraction. We evaluated the molecular evolution of CRISPs in toxicoferan reptiles at both nucleotide and protein levels relative to their nonvenomous mammalian homologs. We show that the evolution of CRISP gene in these reptiles is significantly influenced by positive selection and in snakes (ω = 3.84) more than in lizards (ω = 2.33), whereas mammalian CRISPs were under strong negative selection (CRISP1 = 0.55, CRISP2 = 0.40, and CRISP3 = 0.68). The use of ancestral sequence reconstruction, mapping of mutations on the three-dimensional structure, and detailed evaluation of selection pressures suggests that the toxicoferan CRISPs underwent accelerated evolution aided by strong positive selection and directional mutagenesis, whereas their mammalian homologs are constrained by negative selection. Gene and protein-level selection analyses identified 41 positively selected sites in snakes and 14 sites in lizards. Most of these sites are located on the molecular surface (nearly 76% in snakes and 79% in lizards), whereas the backbone of the protein retains a highly conserved structural scaffold. Nearly 46% of the positively selected sites occur in the cysteine-rich domain of the protein. This directional mutagenesis, where the hotspots of mutations are found on the molecular surface and functional domains of the protein, acts as a diversifying mechanism for the exquisite biological targeting of CRISPs in toxicoferan reptiles. Finally, our analyses suggest that the evolution of toxicoferan-CRISP venoms might have been influenced by the specific predatory mechanism employed by the organism. CRISPs in Elapidae, which mostly employ neurotoxins, have experienced less positive selection pressure (ω = 2.86) compared with the "nonvenomous" colubrids (ω = 4.10) that rely on grip and constriction to capture the prey, and the Viperidae, a lineage that mostly employs haemotoxins (ω = 4.19). Relatively lower omega estimates in Anguimorph lizards (ω = 2.33) than snakes (ω = 3.84) suggests that lizards probably depend more on pace and powerful jaws for predation than venom.


Asunto(s)
Evolución Molecular , Lagartos/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Reptiles/genética , Serpientes/metabolismo , Ponzoñas/genética , Animales , Humanos , Lagartos/genética , Glicoproteínas de Membrana/química , Ratones , Modelos Moleculares , Filogenia , Proteínas de Reptiles/química , Serpientes/genética , Ponzoñas/química
16.
J Mol Evol ; 76(4): 192-204, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23456102

RESUMEN

In this study, we report for the first time a detailed evaluation of the phylogenetic history and molecular evolution of the major coleoid toxins: CAP, carboxypeptidase, chitinase, metalloprotease GON-domain, hyaluronidase, pacifastin, PLA2, SE-cephalotoxin and serine proteases, with the carboxypeptidase and GON-domain documented for the first time in the coleoid venom arsenal. We show that although a majority of sites in these coleoid venom-encoding genes have evolved under the regime of negative selection, a very small proportion of sites are influenced by the transient selection pressures. Moreover, nearly 70 % of these episodically adapted sites are confined to the molecular surface, highlighting the importance of variation of the toxin surface chemistry. Coleoid venoms were revealed to be as complex as other venoms that have traditionally been the recipient of the bulk of research efforts. The presence of multiple peptide/protein types in coleoids similar to those present in other animal venoms identifies a convergent strategy, revealing new information as to what characteristics make a peptide/protein type amenable for recruitment into chemical arsenals. Coleoid venoms have significant potential not only for understanding fundamental aspects of venom evolution but also as an untapped source of novel toxins for use in drug design and discovery.


Asunto(s)
Estructuras Animales/química , Decapodiformes/química , Evolución Molecular , Octopodiformes/química , Filogenia , Proteínas/genética , Ponzoñas/química , Secuencia de Aminoácidos , Estructuras Animales/anatomía & histología , Animales , Secuencia Conservada , Decapodiformes/genética , Venenos de los Peces/química , Venenos de los Peces/genética , Biblioteca de Genes , Datos de Secuencia Molecular , Venenos de Moluscos/química , Venenos de Moluscos/genética , Mutación , Octopodiformes/genética , Estructura Terciaria de Proteína , Proteínas/química , Selección Genética , Ponzoñas/genética
17.
Elife ; 122023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757362

RESUMEN

Spider venoms are a complex concoction of enzymes, polyamines, inorganic salts, and disulfide-rich peptides (DRPs). Although DRPs are widely distributed and abundant, their bevolutionary origin has remained elusive. This knowledge gap stems from the extensive molecular divergence of DRPs and a lack of sequence and structural data from diverse lineages. By evaluating DRPs under a comprehensive phylogenetic, structural and evolutionary framework, we have not only identified 78 novel spider toxin superfamilies but also provided the first evidence for their common origin. We trace the origin of these toxin superfamilies to a primordial knot - which we name 'Adi Shakti', after the creator of the Universe according to Hindu mythology - 375 MYA in the common ancestor of Araneomorphae and Mygalomorphae. As the lineages under evaluation constitute nearly 60% of extant spiders, our findings provide fascinating insights into the early evolution and diversification of the spider venom arsenal. Reliance on a single molecular toxin scaffold by nearly all spiders is in complete contrast to most other venomous animals that have recruited into their venoms diverse toxins with independent origins. By comparatively evaluating the molecular evolutionary histories of araneomorph and mygalomorph spider venom toxins, we highlight their contrasting evolutionary diversification rates. Our results also suggest that venom deployment (e.g. prey capture or self-defense) influences evolutionary diversification of DRP toxin superfamilies.


The majority of spiders rely on their venom to defend themselves, to hunt, or both. Armed with this formidable weapon, they have managed to conquer every continent besides Antarctica since they first emerged about 495 million years ago. A closer look at spider venoms hints at an intriguing evolutionary history which has been rarely examined so far. The venom of other animals, such as snakes or scorpions, is usually formed of a wide range of unrelated toxins; in contrast, spiders rely on a single class of proteins, known as disulfide-rich peptides, to create their deadly venom cocktail. This family of molecules is impressively diverse, with each peptide having a distinct structure and mode of action. Its origins, however, have remained elusive. To fill this knowledge gap, Shaikh and Sunagar scanned the sequences of all disulfide-rich peptides generated to date, bringing together a dataset that includes 60% of all modern-day spiders. The analyses allowed the identification of 78 new superfamilies of spider toxins. They also revealed that all existing peptides originate from a single molecule, which Shaikh and Sunagar named after the powerful Hindu goddess Adi Shakti. This ancestral toxin was present 375 million years ago in the last common ancestor of modern-day spiders. The work also highlighted that disulfide-rich peptides evolved under different pressures in various groups of spiders; this may be because some species primarily use their venom for hunting, and others for defence. While the 'hunters' may need to constantly acquire toxins with new roles and structures to keep their edge over their prey, those that rely on venom to protect themselves may instead benefit from relying on tried-and-tested toxins useful against a range of infrequent predators. Finally, the analyses revealed that the disulphide-rich peptides of Mygalomorphae tarantulas, which form one of the three major groups of spiders, are much more diverse than the related toxins in other spiders. The underlying reason for this difference is still unclear. Several life-saving drugs currently on the market are based on toxins first identified in the venoms of snakes, cone sails or lizards. Similar discoveries could be unlocked by better understanding the range of deadly molecules used by spiders, and how these came to be.


Asunto(s)
Venenos de Araña , Arañas , Animales , Venenos de Araña/genética , Venenos de Araña/química , Filogenia , Disulfuros , Péptidos/química , Evolución Molecular
18.
Int J Biol Macromol ; 253(Pt 2): 126708, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673142

RESUMEN

Despite being famous as 'the king' of the snake world, the king cobra (Ophiophagus hannah) has remained a mysterious species, particularly with respect to its venom ecology. In contrast, venom research has largely focussed on the 'big four' snakes that are greatly responsible for the burden of snakebite in the Indian subcontinent. This study aims to bridge the current void in our understanding of the O. hannah venom by investigating its proteomic, biochemical, pharmacological, and toxinological profiles via interdisciplinary approaches. Considering their physical resemblance, the king cobra is often compared to the spectacled cobra (Naja naja). Comparative venomics of O. hannah and N. naja in this study provided interesting insights into their venom compositions, activities, and potencies. Our findings suggest that the O. hannah venom, despite being relatively less complex than the N. naja venom, is equally potent. Finally, our in vitro and in vivo assays revealed that both Indian polyvalent and Thai Red Cross monovalent antivenoms completely fail to neutralise the O. hannah venom. Our findings provide guidelines for the management of bites from this clinically important yet neglected snake species in India.


Asunto(s)
Ophiophagus hannah , Mordeduras de Serpientes , Animales , Proteómica , Antivenenos/química , Venenos Elapídicos/química , Mordeduras de Serpientes/tratamiento farmacológico , Naja naja
19.
J Mol Evol ; 75(5-6): 168-83, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23160567

RESUMEN

In the past, toxinological research on reptiles has focused principally on clinically important species. As a result, our understanding of the evolution of the reptile venom system is limited. Here, for the first time, we describe the structural and molecular evolutionary features of the mandibular toxin-secreting gland of Abronia graminea, a representative of one of the poorly known and entirely arboreal lineages of anguimorph lizards. We show that the mandibular gland is robust and serous, characters consistent with those expected of a toxin-secreting gland in active use. A wide array of transcripts were recovered that were homologous to those encoded by the indisputably venomous helodermatid lizards. We show that some of these toxin transcripts are evolving under active selection and show evidence of rapid diversification. Helokinestatin peptides in particular are revealed to have accumulated residues that have undergone episodic diversifying selections. Conversely, the natriuretic peptides have evolved under tremendous evolutionary constraints despite being encoded in tandem with helokinestatins by the same gene precursor. Of particular note is the sequencing for the first time of kunitz peptides from a lizard toxin-secreting gland. Not only are kunitz peptides shown to be an ancestral toxicoferan toxin, the ancestral state of this peptide is revealed to be a dual domain encoding precursor. This research provides insight into the evolutionary history of the ancient toxicoferan reptile venom system. In addition, it shows that even 'clinically irrelevant' species can be a rich source of novel venom components, worthy of investigation for drug design and biomedical research.


Asunto(s)
Lagartos/genética , Ponzoñas/genética , Secuencia de Aminoácidos , Animales , Evolución Molecular , Lagartos/clasificación , Datos de Secuencia Molecular , Péptidos Natriuréticos/química , Péptidos Natriuréticos/genética , Filogenia , Alineación de Secuencia , Glándula Submandibular/citología , Factores de Crecimiento Endotelial Vascular/genética , Ponzoñas/química
20.
Toxins (Basel) ; 14(6)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35737081

RESUMEN

Venom is a dynamic trait that has contributed to the success of numerous organismal lineages. Predominantly composed of proteins, these complex cocktails are deployed for predation and/or self-defence. Many non-toxic physiological proteins have been convergently and recurrently recruited by venomous animals into their toxin arsenal. Phospholipase A2 (PLA2) is one such protein and features in the venoms of many organisms across the animal kingdom, including snakes of the families Elapidae and Viperidae. Understanding the evolutionary history of this superfamily would therefore provide insight into the origin and diversification of venom toxins and the evolution of novelty more broadly. The literature is replete with studies that have identified diversifying selection as the sole influence on PLA2 evolution. However, these studies have largely neglected the structural/functional constraints on PLA2s, and the ecology and evolutionary histories of the diverse snake lineages that produce them. By considering these crucial factors and employing evolutionary analyses integrated with a schema for the classification of PLA2s, we uncovered lineage-specific differences in selection regimes. Thus, our work provides novel insights into the evolution of this major snake venom toxin superfamily and underscores the importance of considering the influence of evolutionary and ecological contexts on molecular evolution.


Asunto(s)
Venenos Elapídicos , Toxinas Biológicas , Animales , Venenos Elapídicos/toxicidad , Elapidae , Evolución Molecular , Fosfolipasas A2/genética , Poliésteres , Venenos de Serpiente/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA