Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioinformatics ; 27(15): 2165-6, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21636591

RESUMEN

MOTIVATION: A plugin for the Java-based PathVisio pathway editor has been developed to help users draw diagrams of bioregulatory networks according to the Molecular Interaction Map (MIM) notation. Together with the core PathVisio application, this plugin presents a simple to use and cross-platform application for the construction of complex MIM diagrams with the ability to annotate diagram elements with comments, literature references and links to external databases. This tool extends the capabilities of the PathVisio pathway editor by providing both MIM-specific glyphs and support for a MIM-specific markup language file format for exchange with other MIM-compatible tools and diagram validation. AVAILABILITY: The PathVisio-MIM plugin is freely available and works with versions of PathVisio 2.0.11 and later on Windows, Mac OS X and Linux. Information about MIM notation and the MIMML format is available at http://discover.nci.nih.gov/mim. The plugin, along with diagram examples, instructions and Java source code, may be downloaded at http://discover.nci.nih.gov/mim/mim_pathvisio.html.


Asunto(s)
Biología Computacional/métodos , Redes y Vías Metabólicas , Programas Informáticos , Gráficos por Computador , Anotación de Secuencia Molecular/métodos , Lenguajes de Programación , Interfaz Usuario-Computador
2.
BMC Bioinformatics ; 12: 167, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21586134

RESUMEN

BACKGROUND: The Molecular Interaction Map (MIM) notation offers a standard set of symbols and rules on their usage for the depiction of cellular signaling network diagrams. Such diagrams are essential for disseminating biological information in a concise manner. A lack of software tools for the notation restricts wider usage of the notation. Development of software is facilitated by a more detailed specification regarding software requirements than has previously existed for the MIM notation. RESULTS: A formal implementation of the MIM notation was developed based on a core set of previously defined glyphs. This implementation provides a detailed specification of the properties of the elements of the MIM notation. Building upon this specification, a machine-readable format is provided as a standardized mechanism for the storage and exchange of MIM diagrams. This new format is accompanied by a Java-based application programming interface to help software developers to integrate MIM support into software projects. A validation mechanism is also provided to determine whether MIM datasets are in accordance with syntax rules provided by the new specification. CONCLUSIONS: The work presented here provides key foundational components to promote software development for the MIM notation. These components will speed up the development of interoperable tools supporting the MIM notation and will aid in the translation of data stored in MIM diagrams to other standardized formats. Several projects utilizing this implementation of the notation are outlined herein. The MIM specification is available as an additional file to this publication. Source code, libraries, documentation, and examples are available at http://discover.nci.nih.gov/mim.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Programas Informáticos , Animales , Almacenamiento y Recuperación de la Información , Redes y Vías Metabólicas , Lenguajes de Programación
3.
BMC Genomics ; 10: 277, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19549304

RESUMEN

BACKGROUND: Advances in the high-throughput omic technologies have made it possible to profile cells in a large number of ways at the DNA, RNA, protein, chromosomal, functional, and pharmacological levels. A persistent problem is that some classes of molecular data are labeled with gene identifiers, others with transcript or protein identifiers, and still others with chromosomal locations. What has lagged behind is the ability to integrate the resulting data to uncover complex relationships and patterns. Those issues are reflected in full form by molecular profile data on the panel of 60 diverse human cancer cell lines (the NCI-60) used since 1990 by the U.S. National Cancer Institute to screen compounds for anticancer activity. To our knowledge, CellMiner is the first online database resource for integration of the diverse molecular types of NCI-60 and related meta data. DESCRIPTION: CellMiner enables scientists to perform advanced querying of molecular information on NCI-60 (and additional types) through a single web interface. CellMiner is a freely available tool that organizes and stores raw and normalized data that represent multiple types of molecular characterizations at the DNA, RNA, protein, and pharmacological levels. Annotations for each project, along with associated metadata on the samples and datasets, are stored in a MySQL database and linked to the molecular profile data. Data can be queried and downloaded along with comprehensive information on experimental and analytic methods for each data set. A Data Intersection tool allows selection of a list of genes (proteins) in common between two or more data sets and outputs the data for those genes (proteins) in the respective sets. In addition to its role as an integrative resource for the NCI-60, the CellMiner package also serves as a shell for incorporation of molecular profile data on other cell or tissue sample types. CONCLUSION: CellMiner is a relational database tool for storing, querying, integrating, and downloading molecular profile data on the NCI-60 and other cancer cell types. More broadly, it provides a template to use in providing such functionality for other molecular profile data generated by academic institutions, public projects, or the private sector. CellMiner is available online at (http://discover.nci.nih.gov/cellminer/).


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Interfaz Usuario-Computador , Línea Celular Tumoral , Humanos
4.
Cancer Res ; 79(13): 3514-3524, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31113817

RESUMEN

CellMiner (http://discover.nci.nih.gov/cellminer) and CellMinerCDB (https://discover.nci.nih.gov/cellminercdb/) are web-based applications for mining publicly available genomic, molecular, and pharmacologic datasets of human cancer cell lines including the NCI-60, Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, Cancer Therapeutics Response Portal, NCI/DTP small cell lung cancer, and NCI Almanac cell line sets. Here, we introduce our RNA sequencing (RNA-seq) data for the NCI-60 and their access and integration with the other databases. Correlation to transcript microarray expression levels for identical genes and identical cell lines across CellMinerCDB demonstrates the high quality of these new RNA-seq data. We provide composite and isoform transcript expression data and demonstrate diversity in isoform composition for individual cancer- and pharmacologically relevant genes, including HRAS, PTEN, EGFR, RAD51, ALKBH2, BRCA1, ERBB2, TP53, FGFR2, and CTNND1. We reveal cell-specific differences in the overall levels of isoforms and show their linkage to expression of RNA processing and splicing genes as well as resultant alterations in cancer and pharmacologic gene sets. Gene-drug pairings linked by pathways or functions show specific correlations to isoforms compared with composite gene expression, including ALKBH2-benzaldehyde, AKT3-vandetanib, BCR-imatinib, CDK1 and 20-palbociclib, CASP1-imexon, and FGFR3-pazopanib. Loss of MUC1 20 amino acid variable number tandem repeats, which is used to elicit immune response, and the presence of the androgen receptor AR-V4 and -V7 isoforms in all NCI-60 tissue of origin types demonstrate translational relevance. In summary, we introduce RNA-seq data to our CellMiner and CellMinerCDB web applications, allowing their exploration for both research and translational purposes. SIGNIFICANCE: The current study provides RNA sequencing data for the NCI-60 cell lines made accessible through both CellMiner and CellMinerCDB and is an important pharmacogenomics resource for the field.


Asunto(s)
Antineoplásicos/farmacología , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular Tumoral , Bases de Datos Factuales , Evaluación de Medicamentos , Perfilación de la Expresión Génica , Humanos , Neoplasias/patología
5.
iScience ; 10: 247-264, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30553813

RESUMEN

CellMinerCDB provides a web-based resource (https://discover.nci.nih.gov/cellminercdb/) for integrating multiple forms of pharmacological and genomic analyses, and unifying the richest cancer cell line datasets (the NCI-60, NCI-SCLC, Sanger/MGH GDSC, and Broad CCLE/CTRP). CellMinerCDB enables data queries for genomics and gene regulatory network analyses, and exploration of pharmacogenomic determinants and drug signatures. It leverages overlaps of cell lines and drugs across databases to examine reproducibility and expand pathway analyses. We illustrate the value of CellMinerCDB for elucidating gene expression determinants, such as DNA methylation and copy number variations, and highlight complexities in assessing mutational burden. We demonstrate the value of CellMinerCDB in selecting drugs with reproducible activity, expand on the dominant role of SLFN11 for drug response, and present novel response determinants and genomic signatures for topoisomerase inhibitors and schweinfurthins. We also introduce LIX1L as a gene associated with mesenchymal signature and regulation of cellular migration and invasiveness.

6.
Cancer Res ; 77(3): 601-612, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923837

RESUMEN

A unique resource for systems pharmacology and genomic studies is the NCI-60 cancer cell line panel, which provides data for the largest publicly available library of compounds with cytotoxic activity (∼21,000 compounds), including 108 FDA-approved and 70 clinical trial drugs as well as genomic data, including whole-exome sequencing, gene and miRNA transcripts, DNA copy number, and protein levels. Here, we provide the first readily usable genome-wide DNA methylation database for the NCI-60, including 485,577 probes from the Infinium HumanMethylation450k BeadChip array, which yielded DNA methylation signatures for 17,559 genes integrated into our open access CellMiner version 2.0 (https://discover.nci.nih.gov/cellminer). Among new insights, transcript versus DNA methylation correlations revealed the epithelial/mesenchymal gene functional category as being influenced most heavily by methylation. DNA methylation and copy number integration with transcript levels yielded an assessment of their relative influence for 15,798 genes, including tumor suppressor, mitochondrial, and mismatch repair genes. Four forms of molecular data were combined, providing rationale for microsatellite instability for 8 of the 9 cell lines in which it occurred. Individual cell line analyses showed global methylome patterns with overall methylation levels ranging from 17% to 84%. A six-gene model, including PARP1, EP300, KDM5C, SMARCB1, and UHRF1 matched this pattern. In addition, promoter methylation of two translationally relevant genes, Schlafen 11 (SLFN11) and methylguanine methyltransferase (MGMT), served as indicators of therapeutic resistance or susceptibility, respectively. Overall, our database provides a resource of pharmacologic data that can reinforce known therapeutic strategies and identify novel drugs and drug targets across multiple cancer types. Cancer Res; 77(3); 601-12. ©2016 AACR.


Asunto(s)
Línea Celular Tumoral , Metilación de ADN , Bases de Datos Factuales , Neoplasias/genética , Humanos , Internet
7.
BMC Bioinformatics ; 7: 192, 2006 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-16600027

RESUMEN

BACKGROUND: Monoclonal antibodies are used extensively throughout the biomedical sciences for detection of antigens, either in vitro or in vivo. We, for example, have used them for quantitation of proteins on "reverse-phase" protein lysate arrays. For those studies, we quality-controlled > 600 available monoclonal antibodies and also needed to develop precise information on the genes that encode their antigens. Translation among the various protein and gene identifier types proved non-trivial because of one-to-many and many-to-one relationships. To organize the antibody, protein, and gene information, we initially developed a relational database in Filemaker for our own use. When it became apparent that the information would be useful to many other researchers faced with the need to choose or characterize antibodies, we developed it further as AbMiner, a fully relational web-based database under MySQL, programmed in Java. DESCRIPTION: AbMiner is a user-friendly, web-based relational database of information on > 600 commercially available antibodies that we validated by Western blot for protein microarray studies. It includes many types of information on the antibody, the immunogen, the vendor, the antigen, and the antigen's gene. Multiple gene and protein identifier types provide links to corresponding entries in a variety of other public databases, including resources for phosphorylation-specific antibodies. AbMiner also includes our quality-control data against a pool of 60 diverse cancer cell types (the NCI-60) and also protein expression levels for the NCI-60 cells measured using our high-density "reverse-phase" protein lysate microarrays for a selection of the listed antibodies. Some other available database resources give information on antibody specificity for one or a couple of cell types. In contrast, the data in AbMiner indicate specificity with respect to the antigens in a pool of 60 diverse cell types from nine different tissues of origin. CONCLUSION: AbMiner is a relational database that provides extensive information from our own laboratory and other sources on more than 600 available antibodies and the genes that encode the antibodies' antigens. The data will be made freely available at http://discover.nci.nih.gov/abminer.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Biología Computacional/métodos , Bases de Datos de Proteínas , Genómica/métodos , Técnicas Inmunológicas , Interfaz Usuario-Computador , Sistemas de Administración de Bases de Datos , Almacenamiento y Recuperación de la Información/métodos , Internet , Análisis por Matrices de Proteínas/métodos , Proteómica/métodos , Investigación
8.
BMC Bioinformatics ; 6: 168, 2005 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-15998470

RESUMEN

BACKGROUND: We previously developed GoMiner, an application that organizes lists of 'interesting' genes (for example, under-and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology. The original version of GoMiner was oriented toward visualization and interpretation of the results from a single microarray (or other high-throughput experimental platform), using a graphical user interface. Although that version can be used to examine the results from a number of microarrays one at a time, that is a rather tedious task, and original GoMiner includes no apparatus for obtaining a global picture of results from an experiment that consists of multiple microarrays. We wanted to provide a computational resource that automates the analysis of multiple microarrays and then integrates the results across all of them in useful exportable output files and visualizations. RESULTS: We now introduce a new tool, High-Throughput GoMiner, that has those capabilities and a number of others: It (i) efficiently performs the computationally-intensive task of automated batch processing of an arbitrary number of microarrays, (ii) produces a human-or computer-readable report that rank-orders the multiple microarray results according to the number of significant GO categories, (iii) integrates the multiple microarray results by providing organized, global clustered image map visualizations of the relationships of significant GO categories, (iv) provides a fast form of 'false discovery rate' multiple comparisons calculation, and (v) provides annotations and visualizations for relating transcription factor binding sites to genes and GO categories. CONCLUSION: High-Throughput GoMiner achieves the desired goal of providing a computational resource that automates the analysis of multiple microarrays and integrates results across all of the microarrays. For illustration, we show an application of this new tool to the interpretation of altered gene expression patterns in Common Variable Immune Deficiency (CVID). High-Throughput GoMiner will be useful in a wide range of applications, including the study of time-courses, evaluation of multiple drug treatments, comparison of multiple gene knock-outs or knock-downs, and screening of large numbers of chemical derivatives generated from a promising lead compound.


Asunto(s)
Inmunodeficiencia Variable Común/genética , Perfilación de la Expresión Génica/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Programas Informáticos , Interfaz Usuario-Computador , Sitios de Unión , Mapeo Cromosómico , Análisis por Conglomerados , Inmunodeficiencia Variable Común/tratamiento farmacológico , Presentación de Datos , Bases de Datos Genéticas , Procesamiento Automatizado de Datos , Humanos , Fenotipo , Esquistosomiasis/genética , Diseño de Software , Factores de Transcripción/metabolismo
9.
Clin Cancer Res ; 21(17): 3841-52, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26048278

RESUMEN

The NCI-60 cancer cell line panel provides a premier model for data integration, and systems pharmacology being the largest publicly available database of anticancer drug activity, genomic, molecular, and phenotypic data. It comprises gene expression (25,722 transcripts), microRNAs (360 miRNAs), whole-genome DNA copy number (23,413 genes), whole-exome sequencing (variants for 16,568 genes), protein levels (94 genes), and cytotoxic activity (20,861 compounds). Included are 158 FDA-approved drugs and 79 that are in clinical trials. To improve data accessibility to bioinformaticists and non-bioinformaticists alike, we have developed the CellMiner web-based tools. Here, we describe the newest CellMiner version, including integration of novel databases and tools associated with whole-exome sequencing and protein expression, and review the tools. Included are (i) "Cell line signature" for DNA, RNA, protein, and drugs; (ii) "Cross correlations" for up to 150 input genes, microRNAs, and compounds in a single query; (iii) "Pattern comparison" to identify connections among drugs, gene expression, genomic variants, microRNA, and protein expressions; (iv) "Genetic variation versus drug visualization" to identify potential new drug:gene DNA variant relationships; and (v) "Genetic variant summation" designed to provide a synopsis of mutational burden on any pathway or gene group for up to 150 genes. Together, these tools allow users to flexibly query the NCI-60 data for potential relationships between genomic, molecular, and pharmacologic parameters in a manner specific to the user's area of expertise. Examples for both gain- (RAS) and loss-of-function (PTEN) alterations are provided.


Asunto(s)
Antineoplásicos , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Genómica/métodos , Programas Informáticos , Antineoplásicos/farmacología , Línea Celular Tumoral , Bases de Datos Factuales , Exoma , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Navegador Web
10.
PLoS One ; 9(3): e92047, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24670534

RESUMEN

Array-based comparative genomic hybridization (aCGH) is a powerful technique for detecting gene copy number variation. It is generally considered to be robust and convenient since it measures DNA rather than RNA. In the current study, we combine copy number estimates from four different platforms (Agilent 44 K, NimbleGen 385 K, Affymetrix 500 K and Illumina Human1Mv1_C) to compute a reliable, high-resolution, easy to understand output for the measure of copy number changes in the 60 cancer cells of the NCI-DTP (the NCI-60). We then relate the results to gene expression. We explain how to access that database using our CellMiner web-tool and provide an example of the ease of comparison with transcript expression, whole exome sequencing, microRNA expression and response to 20,000 drugs and other chemical compounds. We then demonstrate how the data can be analyzed integratively with transcript expression data for the whole genome (26,065 genes). Comparison of copy number and expression levels shows an overall medium high correlation (median r = 0.247), with significantly higher correlations (median r = 0.408) for the known tumor suppressor genes. That observation is consistent with the hypothesis that gene loss is an important mechanism for tumor suppressor inactivation. An integrated analysis of concurrent DNA copy number and gene expression change is presented. Limiting attention to focal DNA gains or losses, we identify and reveal novel candidate tumor suppressors with matching alterations in transcript level.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genoma Humano/genética , Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Programas Informáticos , Línea Celular Tumoral , Hibridación Genómica Comparativa , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Internet , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Supresoras de Tumor/genética
11.
PLoS One ; 9(7): e101670, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25032700

RESUMEN

Exome sequencing provides unprecedented insights into cancer biology and pharmacological response. Here we assess these two parameters for the NCI-60, which is among the richest genomic and pharmacological publicly available cancer cell line databases. Homozygous genetic variants that putatively affect protein function were identified in 1,199 genes (approximately 6% of all genes). Variants that are either enriched or depleted compared to non-cancerous genomes, and thus may be influential in cancer progression and differential drug response were identified for 2,546 genes. Potential gene knockouts are made available. Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs, reveals ≈80-fold range in resistance versus sensitivity response across cell lines. 103,422 gene variants were significantly correlated with at least one compound (at p<0.0002). These include genes of known pharmacological importance such as IGF1R, BRAF, RAD52, MTOR, STAT2 and TSC2 as well as a large number of candidate genes such as NOM1, TLL2, and XDH. We introduce two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for a broad range of researchers, especially those without bioinformatics support. The first tool, "Genetic variant versus drug visualization", provides a visualization of significant correlations between drug activity-gene variant combinations. Examples are given for the known vemurafenib-BRAF, and novel ifosfamide-RAD52 pairings. The second, "Genetic variant summation" allows an assessment of cumulative genetic variations for up to 150 combined genes together; and is designed to identify the variant burden for molecular pathways or functional grouping of genes. An example of its use is provided for the EGFR-ERBB2 pathway gene variant data and the identification of correlated EGFR, ERBB2, MTOR, BRAF, MEK and ERK inhibitors. The new tools are implemented as an updated web-based CellMiner version, for which the present publication serves as a compendium.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Exoma/genética , Genoma/genética , Neoplasias/genética , Antineoplásicos/farmacología , Secuencia de Bases , Línea Celular Tumoral , Bases de Datos Factuales , Variación Genética/genética , Genómica/métodos , Humanos , Neoplasias/tratamiento farmacológico , Análisis de Secuencia de ADN
12.
PLoS One ; 7(5): e35716, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570691

RESUMEN

Although there is extensive information on gene expression and molecular interactions in various cell types, integrating those data in a functionally coherent manner remains challenging. This study explores the premise that genes whose expression at the mRNA level is correlated over diverse cell lines are likely to function together in a network of molecular interactions. We previously derived expression-correlated gene clusters from the database of the NCI-60 human tumor cell lines and associated each cluster with function categories of the Gene Ontology (GO) database. From a cluster rich in genes associated with GO categories related to cell migration, we extracted 15 genes that were highly cross-correlated; prominent among them were RRAS, AXL, ADAM9, FN14, and integrin-beta1. We then used those 15 genes as bait to identify other correlated genes in the NCI-60 database. A survey of current literature disclosed, not only that many of the expression-correlated genes engaged in molecular interactions related to migration, invasion, and metastasis, but that highly cross-correlated subsets of those genes engaged in specific cell migration processes. We assembled this information in molecular interaction maps (MIMs) that depict networks governing 3 cell migration processes: degradation of extracellular matrix, production of transient focal complexes at the leading edge of the cell, and retraction of the rear part of the cell. Also depicted are interactions controlling the release and effects of calcium ions, which may regulate migration in a spaciotemporal manner in the cell. The MIMs and associated text comprise a detailed and integrated summary of what is currently known or surmised about the role of the expression cross-correlated genes in molecular networks governing those processes.


Asunto(s)
Movimiento Celular/genética , Redes Reguladoras de Genes , Transcriptoma , Actinas/genética , Actinas/metabolismo , Calcio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Análisis por Conglomerados , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Integrinas/genética , Integrinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Tirosina Quinasa del Receptor Axl
13.
Cancer Res ; 72(14): 3499-511, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22802077

RESUMEN

High-throughput and high-content databases are increasingly important resources in molecular medicine, systems biology, and pharmacology. However, the information usually resides in unwieldy databases, limiting ready data analysis and integration. One resource that offers substantial potential for improvement in this regard is the NCI-60 cell line database compiled by the U.S. National Cancer Institute, which has been extensively characterized across numerous genomic and pharmacologic response platforms. In this report, we introduce a CellMiner (http://discover.nci.nih.gov/cellminer/) web application designed to improve the use of this extensive database. CellMiner tools allowed rapid data retrieval of transcripts for 22,379 genes and 360 microRNAs along with activity reports for 20,503 chemical compounds including 102 drugs approved by the U.S. Food and Drug Administration. Converting these differential levels into quantitative patterns across the NCI-60 clarified data organization and cross-comparisons using a novel pattern match tool. Data queries for potential relationships among parameters can be conducted in an iterative manner specific to user interests and expertise. Examples of the in silico discovery process afforded by CellMiner were provided for multidrug resistance analyses and doxorubicin activity; identification of colon-specific genes, microRNAs, and drugs; microRNAs related to the miR-17-92 cluster; and drug identification patterns matched to erlotinib, gefitinib, afatinib, and lapatinib. CellMiner greatly broadens applications of the extensive NCI-60 database for discovery by creating web-based processes that are rapid, flexible, and readily applied by users without bioinformatics expertise.


Asunto(s)
Bases de Datos Factuales , Evaluación de Medicamentos , Expresión Génica , Genómica , Almacenamiento y Recuperación de la Información , Internet , Antineoplásicos/uso terapéutico , Biología Computacional , Humanos , MicroARNs , Análisis por Micromatrices , National Cancer Institute (U.S.) , ARN , Estados Unidos
14.
Genome Biol ; 4(4): R27, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12702208

RESUMEN

MatchMiner is a freely available program package for batch navigation among gene and gene product identifier types commonly encountered in microarray studies and other forms of 'omic' research. The user inputs a list of gene identifiers and then uses the Merge function to find the overlap with a second list of identifiers of either the same or a different type or uses the LookUp function to find corresponding identifiers.


Asunto(s)
Genómica , Programas Informáticos , Algoritmos , Biología Computacional , Bases de Datos Genéticas , Humanos , Hibridación Fluorescente in Situ , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas/genética , ARN/genética , Análisis de Secuencia de ADN , Diseño de Software
15.
Genome Biol ; 4(4): R28, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12702209

RESUMEN

We have developed GoMiner, a program package that organizes lists of 'interesting' genes (for example, under- and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology. GoMiner provides quantitative and statistical output files and two useful visualizations. The first is a tree-like structure analogous to that in the AmiGO browser and the second is a compact, dynamically interactive 'directed acyclic graph'. Genes displayed in GoMiner are linked to major public bioinformatics resources.


Asunto(s)
Genómica , Proteómica , Programas Informáticos , Gráficos por Computador , Interpretación Estadística de Datos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Diseño de Software
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA