Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(3): 560-563, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38407162

RESUMEN

Analysis of genome sequencing data from >100,000 genomes of Mycobacterium tuberculosis complex using TB-Annotator software revealed a previously unknown lineage, proposed name L10, in central Africa. Phylogenetic reconstruction suggests L10 could represent a missing link in the evolutionary and geographic migration histories of M. africanum.


Asunto(s)
Evolución Biológica , Mycobacterium , Filogenia , Mycobacterium/genética , Programas Informáticos , África Central/epidemiología
2.
Eur Respir J ; 57(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32943401

RESUMEN

Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture.Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum.With MTBC DNA tests, the limit of detection was 100-1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1-99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3-12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare "Mycobacterium canettii" strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 out of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free.Deeplex Myc-TB may enable fast, tailored tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Preparaciones Farmacéuticas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
3.
Clin Infect Dis ; 68(6): 993-1000, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30032179

RESUMEN

BACKGROUND: The incidence of nosocomial infections due to carbapenem-resistant Klebsiella pneumoniae is increasing worldwide. Whole-genome sequencing (WGS) can help elucidate the transmission route of nosocomial pathogens. METHODS: We combined WGS and epidemiological data to analyze an outbreak of New Delhi metallo-ß-lactamase (NDM)-producing K. pneumoniae that occurred in 2 Belgian hospitals situated about 50 miles apart. We characterized 74 NDM-producing K. pneumoniae isolates (9 from hospital A, 24 from hospital B, and 41 contemporary isolates from 15 other Belgian hospitals) using pulsed-field gel electrophoresis and WGS. RESULTS: A K. pneumoniae sequence type 716 clone was identified as being responsible for the outbreak with all 9 strains from hospital A and 20 of 24 from hospital B sharing a unique pulsotype and being clustered together at WGS (compared with 1 of 41 isolates from other Belgian hospitals). We identified the outpatient clinic of hospital B as the probable bridging site between the hospitals after combining epidemiological, phylogenetic, and resistome data. We also identified the patient who probably caused the transmission. In fact, all but 1 strain from hospital A carried a Tn1331-like transposon, whereas none of the hospital B isolates did. The patient from hospital A who did not have the Tn1331-like transposon was treated at the outpatient clinic of hospital B on the same day as the first NDM-producing K. pneumoniae-positive patient from hospital B. CONCLUSIONS: The results from our WGS-guided investigation highlight the importance of implementing adequate infection control measures in outpatient settings, especially when healthcare delivery moves from acute care facilities to outpatient clinics.


Asunto(s)
Instituciones de Atención Ambulatoria , Infección Hospitalaria , Brotes de Enfermedades , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/genética , Análisis por Conglomerados , Biología Computacional/métodos , Farmacorresistencia Bacteriana , Genoma Bacteriano , Humanos , Infecciones por Klebsiella/transmisión , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma , beta-Lactamasas/genética
4.
Emerg Infect Dis ; 25(3): 564-568, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30789124

RESUMEN

In a 12-month nationwide study on the prevalence of drug-resistant tuberculosis (TB) in Lebanon, we identified 3 multidrug-resistant cases and 3 extensively drug-resistant TB cases in refugees, migrants, and 1 Lebanon resident. Enhanced diagnostics, particularly in major destinations for refugees, asylum seekers, and migrant workers, can inform treatment decisions and may help prevent the spread of drug-resistant TB.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Adulto , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Femenino , Genes Bacterianos , Genotipo , Historia del Siglo XXI , Humanos , Líbano/epidemiología , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Repeticiones de Minisatélite , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/historia , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adulto Joven
5.
J Clin Microbiol ; 57(11)2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31413081

RESUMEN

Rifampin heteroresistance-where rifampin-resistant and -susceptible tuberculosis (TB) bacilli coexist-may result in failed standard TB treatment and potential spread of rifampin-resistant strains. The detection of rifampin heteroresistance in routine rapid diagnostic tests (RDTs) allows for patients to receive prompt and effective multidrug-resistant-TB treatment and may improve rifampin-resistant TB control. The limit of detection (LOD) of rifampin heteroresistance for phenotypic drug susceptibility testing by the proportion method is 1% and, yet, is insufficiently documented for RDTs. We, therefore, aimed to determine, for the four RDTs (XpertMTB/RIF, XpertMTB/RIF Ultra, GenoTypeMTBDRplusv2.0, and GenoscholarNTM+MDRTBII), the LOD per probe and mutation, validated by CFU counting and targeted deep sequencing (Deeplex-MycTB). We selected one rifampin-susceptible and four rifampin-resistant strains, with mutations D435V, H445D, H445Y, and S450L, respectively, mixed them in various proportions in triplicate, tested them with each RDT, and determined the LODs per mutation type. Deeplex-MycTB revealed concordant proportions of the minority resistant variants in the mixtures. The Deeplex-MycTB-validated LODs ranged from 20% to 80% for XpertMTB/RIF, 20% to 70% for Xpert Ultra, 5% to 10% for GenoTypeMTBDRplusv2.0, and 1% to 10% for GenoscholarNTM+MDRTBII for the different mutations. Deeplex-MycTB, GenoTypeMTBDRplusv2.0, and GenoscholarNTM+MDRTBII provide explicit information on rifampin heteroresistance for the most frequently detected mutations. Classic Xpert and Ultra report rifampin heteroresistance as rifampin resistance, while Ultra may denote rifampin heteroresistance through "mixed patterns" of wild-type and mutant melt probe, melt peak temperatures. Overall, our findings inform end users that the threshold for reporting resistance in the case of rifampin heteroresistance is the highest for Classic Xpert and Ultra to resolve phenotypic and genotypic discordant rifampin-resistant TB results.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Técnicas de Diagnóstico Molecular/normas , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Proteínas Bacterianas/genética , Genotipo , Humanos , Límite de Detección , Pruebas de Sensibilidad Microbiana , Técnicas de Diagnóstico Molecular/métodos , Mutación , Mycobacterium tuberculosis/genética , Juego de Reactivos para Diagnóstico/normas , Sensibilidad y Especificidad , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
6.
PLoS Pathog ; 13(11): e1006752, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29176894

RESUMEN

The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.


Asunto(s)
Coenzimas/biosíntesis , Transferencia de Gen Horizontal , Metaloproteínas/biosíntesis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxígeno/metabolismo , Tuberculosis/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Hipoxia/metabolismo , Hipoxia/microbiología , Ratones , Ratones Endogámicos C57BL , Cofactores de Molibdeno , Mycobacterium/genética , Mycobacterium/metabolismo , Nitratos/metabolismo , Pteridinas , Tuberculosis/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(35): 9876-81, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528665

RESUMEN

Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.


Asunto(s)
ADN Bacteriano/genética , Transferencia de Gen Horizontal , Genoma Bacteriano/genética , Mycobacterium/genética , Evolución Molecular , Humanos , Mycobacterium/clasificación , Mycobacterium/fisiología , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Especificidad de la Especie , Tuberculosis/microbiología , Secuenciación Completa del Genoma/métodos
8.
J Clin Microbiol ; 56(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29142049

RESUMEN

Since 2004, variable-number tandem-repeat (VNTR) typing of Mycobacterium tuberculosis complex isolates has been applied on a structural basis in The Netherlands to study the epidemiology of tuberculosis (TB). Although this technique is faster and technically less demanding than the previously used restriction fragment length polymorphism (RFLP) typing, reproducibility remains a concern. In the period from 2004 to 2015, 8,532 isolates were subjected to VNTR typing in The Netherlands, with 186 (2.2%) of these exhibiting double alleles at one locus. Double alleles were most common in loci 4052 and 2163b. The variables significantly associated with double alleles were urban living (odds ratio [OR], 1.503; 95% confidence interval [CI], 1.084 to 2.084; P = 0.014) and pulmonary TB (OR, 1.703; 95% CI, 1.216 to 2.386; P = 0.002). Single-colony cultures of double-allele strains were produced and revealed single-allele profiles; a maximum of five single nucleotide polymorphisms (SNPs) was observed between the single- and double-allele isolates from the same patient when whole-genome sequencing (WGS) was applied. This indicates the presence of two bacterial populations with slightly different VNTR profiles in the parental population, related to genetic drift. This observation is confirmed by the fact that secondary cases from TB source cases with double-allele isolates sometimes display only one of the two alleles present in the source case. Double alleles occur at a frequency of 2.2% in VNTR patterns in The Netherlands. They are caused by biological variation rather than by technical aberrations and can be transmitted either as single- or double-allele variants.


Asunto(s)
Alelos , Repeticiones de Minisatélite/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis/microbiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , ADN Bacteriano/genética , Femenino , Flujo Genético , Sitios Genéticos , Genoma Bacteriano/genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Polimorfismo de Nucleótido Simple , Prevalencia , Factores de Riesgo , Análisis de Secuencia de ADN , Tuberculosis/epidemiología , Adulto Joven
9.
Adv Exp Med Biol ; 1019: 27-41, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29116628

RESUMEN

Genome-based insights into the evolution of Mycobacterium tuberculosis and other tuberculosis-causing mycobacteria are constantly increasing. In particular, the recent genomic and functional characterization of several Myocbacterium canettii strains, which are thought to resemble in many aspects the putative common ancestor of the members of the M. tuberculosis complex (MTBC), has consolidated a plausible scenario of the early evolution of tuberculosis-causing mycobacteria, in which the clonal MTBC, comprising numerous key pathogens of mammalian hosts, has evolved from a generalist mycobacterium living in the environment. These studies also have considerably enriched our knowledge on selected molecular events that likely have contributed to the incursion, maintenance and spread of the MTBC members in diverse mammalian hosts. Here, we summarize and discuss recently revealed molecular and evolutionary aspects and emphasize the vast utility of M. canettii strains for identifying the mechanisms that contributed to the global emergence of M. tuberculosis as one of the most important human pathogens.


Asunto(s)
Genoma Bacteriano , Infecciones por Mycobacterium/epidemiología , Mycobacterium tuberculosis/genética , Mycobacterium/genética , Filogenia , Animales , Evolución Biológica , Humanos , Mycobacterium/clasificación , Mycobacterium/crecimiento & desarrollo , Mycobacterium/patogenicidad , Infecciones por Mycobacterium/microbiología , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Filogeografía , Virulencia
10.
Adv Exp Med Biol ; 1019: 43-78, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29116629

RESUMEN

Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Genoma Bacteriano , Tipificación de Secuencias Multilocus/métodos , Mycobacterium tuberculosis/clasificación , Tuberculosis/diagnóstico , Secuenciación Completa del Genoma/métodos , Técnicas de Tipificación Bacteriana/clasificación , Técnicas de Tipificación Bacteriana/instrumentación , Dermatoglifia del ADN/instrumentación , Dermatoglifia del ADN/métodos , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Repeticiones de Minisatélite , Tipificación de Secuencias Multilocus/instrumentación , Tasa de Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Polimorfismo de Longitud del Fragmento de Restricción , Tuberculosis/epidemiología , Tuberculosis/microbiología , Tuberculosis/transmisión , Secuenciación Completa del Genoma/instrumentación
12.
Mol Microbiol ; 93(5): 835-52, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25039682

RESUMEN

Recent advances in genomics and molecular biology are providing an excellent opportunity to get a glimpse into the past, to examine the present, and to predict the future evolution of pathogenic mycobacteria, and in particular that of Mycobacterium tuberculosis, the agent of human tuberculosis. The recent availability of genome sequences of several Mycobacterium canettii strains, representing evolutionary early-branching tubercle bacilli, has allowed the genomic and molecular features of the putative ancestor of the M. tuberculosis complex (MTBC) to be reconstituted. Analyses have identified extensive lateral gene transfer and recombination events in M. canettii and/or the MTBC, leading to suggestions of a past environmental reservoir where the ancestor(s) of the tubercle bacilli might have adapted to an intracellular lifestyle. The daily increases in M. tuberculosis genome data and the remaining urgent Public Health problem of tuberculosis make it more important than ever to try and understand the origins and the future evolution of the MTBC. Here we critically discuss a series of questions on gene-loss, acquisition, recombination, mutation and conservation that have recently arisen and which are key to better understand the outstanding evolutionary success of one of the most widespread and most deadly bacterial pathogens in the history of humankind.


Asunto(s)
Evolución Molecular , Mycobacterium/genética , Tuberculosis/microbiología , Genoma Bacteriano , Humanos , Mycobacterium/clasificación , Mycobacterium/aislamiento & purificación , Filogenia
14.
BMC Genomics ; 15: 272, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24713045

RESUMEN

BACKGROUND: Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. RESULTS: Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were obtained not only for the dairy S. infantarius CJ18, but also for the blood isolate S. pasteurianus ATCC 43144. CONCLUSIONS: Our whole genome analyses suggest traits of adaptation of S. macedonicus to the nutrient-rich dairy environment. During this process the bacterium gained genes presumably important for this new ecological niche. Finally, S. macedonicus carries a reduced number of putative SBSEC virulence factors, which suggests a diminished pathogenic potential.


Asunto(s)
Productos Lácteos/microbiología , Microbiología de Alimentos , Genoma Bacteriano , Genómica , Streptococcus/genética , Adaptación Biológica/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Metabolismo Energético/genética , Tracto Gastrointestinal/microbiología , Orden Génico , Transferencia de Gen Horizontal , Genes Bacterianos , Islas Genómicas , Humanos , Filogenia , Proteolisis , Streptococcus/clasificación , Streptococcus/aislamiento & purificación , Streptococcus/metabolismo , Streptococcus bovis/genética , Streptococcus bovis/aislamiento & purificación , Streptococcus bovis/metabolismo , Factores de Virulencia/genética , Vitaminas/biosíntesis
16.
J Clin Microbiol ; 52(1): 164-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24172154

RESUMEN

Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.


Asunto(s)
Repeticiones de Minisatélite , Tipificación Molecular/métodos , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Humanos , Epidemiología Molecular/métodos , Tuberculosis/epidemiología
17.
Diagn Microbiol Infect Dis ; 109(2): 116249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537504

RESUMEN

Targeted Next Generation Sequencing (tNGS) and Whole Genome Sequencing (WGS) are increasingly used for genotypic drug susceptibility testing (gDST) of Mycobacterium tuberculosis. Thirty-two multi-drugs resistant and 40 drug susceptible isolates from Madagascar were tested with Deeplex® Myc-TB and WGS using the Mykrobe analysis pipeline. Sixty-four of 72 (89 %) yielded concordant categorical gDST results for drugs tested by both assays. Mykrobe didn't detect pncA K96T, pncA Q141P, pncA H51P, pncA H82R, rrs C517T and rpsL K43R mutations, which were identified as minority variants in corresponding isolates by tNGS. One discrepancy (rrs C517T) was associated with insufficient sequencing depth on WGS. Deeplex® Myc-TB didn't detect inhA G-154A which isn't covered by the assay's amplification targets. Despite those targets being included in the Deeplex® Myc-TB assay, a pncA T47A and a deletion in gid were not identified in one isolate respectively. The evaluated WGS and tNGS gDST assays show high but imperfect concordance.


Asunto(s)
Antituberculosos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Madagascar , Genoma Bacteriano/genética , Mutación , Proteínas Bacterianas/genética , Técnicas de Genotipaje/métodos
18.
Lancet Glob Health ; 12(6): e1017-e1026, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762282

RESUMEN

BACKGROUND: Post-exposure prophylaxis (PEP) using single-dose rifampicin reduces progression from infection with Mycobacterium leprae to leprosy disease. We compared effectiveness of different administration modalities, using a higher (20 mg/kg) dose of rifampicin-single double-dose rifampicin (SDDR)-PEP. METHODS: We did a cluster randomised study in 16 villages in Madagascar and 48 villages in Comoros. Villages were randomly assigned to four study arms and inhabitants were screened once a year for leprosy, for 4 consecutive years. All permanent residents (no age restriction) were eligible to participate and all identified patients with leprosy were treated with multidrug therapy (SDDR-PEP was provided to asymptomatic contacts aged ≥2 years). Arm 1 was the comparator arm, in which no PEP was provided. In arm 2, SDDR-PEP was provided to household contacts of patients with leprosy, whereas arm 3 extended SDDR-PEP to anyone living within 100 m. In arm 4, SDDR-PEP was offered to household contacts and to anyone living within 100 m and testing positive to anti-phenolic glycolipid-I. The main outcome was the incidence rate ratio (IRR) of leprosy between the comparator arm and each of the intervention arms. We also assessed the individual protective effect of SDDR-PEP and explored spatial associations. This trial is registered with ClinicalTrials.gov, NCT03662022, and is completed. FINDINGS: Between Jan 11, 2019, and Jan 16, 2023, we enrolled 109 436 individuals, of whom 95 762 had evaluable follow-up data. Our primary analysis showed a non-significant reduction in leprosy incidence in arm 2 (IRR 0·95), arm 3 (IRR 0·80), and arm 4 (IRR 0·58). After controlling for baseline prevalence, the reduction in arm 3 became stronger and significant (IRR 0·56, p=0·0030). At an individual level SDDR-PEP was also protective with an IRR of 0·55 (p=0·0050). Risk of leprosy was two to four times higher for those living within 75 m of an index patient at baseline. INTERPRETATION: SDDR-PEP appears to protect against leprosy but less than anticipated. Strong spatial associations were observed within 75 m of index patients. Targeted door-to-door screening around index patients complemented by a blanket SDDR-PEP approach will probably have a substantial effect on transmission. FUNDING: European and Developing Countries Clinical Trials Partnership. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Asunto(s)
Leprostáticos , Lepra , Profilaxis Posexposición , Rifampin , Humanos , Lepra/prevención & control , Lepra/tratamiento farmacológico , Lepra/epidemiología , Masculino , Femenino , Adulto , Rifampin/administración & dosificación , Rifampin/uso terapéutico , Leprostáticos/uso terapéutico , Leprostáticos/administración & dosificación , Profilaxis Posexposición/métodos , Persona de Mediana Edad , Adolescente , Adulto Joven , Madagascar/epidemiología , Niño , Análisis por Conglomerados , Incidencia , Mycobacterium leprae
19.
PLoS Med ; 10(2): e1001387, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23424287

RESUMEN

BACKGROUND: Understanding Mycobacterium tuberculosis (Mtb) transmission is essential to guide efficient tuberculosis control strategies. Traditional strain typing lacks sufficient discriminatory power to resolve large outbreaks. Here, we tested the potential of using next generation genome sequencing for identification of outbreak-related transmission chains. METHODS AND FINDINGS: During long-term (1997 to 2010) prospective population-based molecular epidemiological surveillance comprising a total of 2,301 patients, we identified a large outbreak caused by an Mtb strain of the Haarlem lineage. The main performance outcome measure of whole genome sequencing (WGS) analyses was the degree of correlation of the WGS analyses with contact tracing data and the spatio-temporal distribution of the outbreak cases. WGS analyses of the 86 isolates revealed 85 single nucleotide polymorphisms (SNPs), subdividing the outbreak into seven genome clusters (two to 24 isolates each), plus 36 unique SNP profiles. WGS results showed that the first outbreak isolates detected in 1997 were falsely clustered by classical genotyping. In 1998, one clone (termed "Hamburg clone") started expanding, apparently independently from differences in the social environment of early cases. Genome-based clustering patterns were in better accordance with contact tracing data and the geographical distribution of the cases than clustering patterns based on classical genotyping. A maximum of three SNPs were identified in eight confirmed human-to-human transmission chains, involving 31 patients. We estimated the Mtb genome evolutionary rate at 0.4 mutations per genome per year. This rate suggests that Mtb grows in its natural host with a doubling time of approximately 22 h (400 generations per year). Based on the genome variation discovered, emergence of the Hamburg clone was dated back to a period between 1993 and 1997, hence shortly before the discovery of the outbreak through epidemiological surveillance. CONCLUSIONS: Our findings suggest that WGS is superior to conventional genotyping for Mtb pathogen tracing and investigating micro-epidemics. WGS provides a measure of Mtb genome evolution over time in its natural host context.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/análisis , Brotes de Enfermedades , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Análisis de Secuencia de ADN/métodos , Tuberculosis/epidemiología , Tuberculosis/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Distribución de Chi-Cuadrado , Niño , Preescolar , Análisis por Conglomerados , Trazado de Contacto , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Alemania/epidemiología , Humanos , Análisis de los Mínimos Cuadrados , Modelos Lineales , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Mycobacterium tuberculosis/clasificación , Fenotipo , Polimorfismo de Nucleótido Simple , Vigilancia de la Población , Estudios Prospectivos , Tuberculosis/microbiología , Tuberculosis/transmisión , Adulto Joven
20.
J Clin Microbiol ; 51(7): 2427-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23658260

RESUMEN

The population structure of 3,776 Mycobacterium tuberculosis isolates was determined using variable-number tandem-repeat (VNTR) typing. The degree of clonality was so high that a more relaxed definition of clustering cannot be applied. Among recent immigrants with non-Euro-American isolates, transmission is overestimated if based on identical VNTR patterns.


Asunto(s)
ADN Bacteriano/genética , Repeticiones de Minisatélite , Tipificación Molecular , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Tuberculosis/epidemiología , Tuberculosis/microbiología , Análisis por Conglomerados , Humanos , Epidemiología Molecular , Mycobacterium tuberculosis/aislamiento & purificación , Países Bajos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA