Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 164(3): 353-64, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824653

RESUMEN

More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, "on/off" manner. Trim28(+/D9) mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-"on" state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine.


Asunto(s)
Epigénesis Genética , Haploinsuficiencia , Proteínas Nucleares/genética , Obesidad/genética , Proteínas Represoras/genética , Delgadez/genética , Adolescente , Animales , Índice de Masa Corporal , Niño , Preescolar , Humanos , Ratones , Encuestas Nutricionales , Polimorfismo Genético , Proteína 28 que Contiene Motivos Tripartito
2.
Cell ; 161(6): 1453-67, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046444

RESUMEN

Resetting of the epigenome in human primordial germ cells (hPGCs) is critical for development. We show that the transcriptional program of hPGCs is distinct from that in mice, with co-expression of somatic specifiers and naive pluripotency genes TFCP2L1 and KLF4. This unique gene regulatory network, established by SOX17 and BLIMP1, drives comprehensive germline DNA demethylation by repressing DNA methylation pathways and activating TET-mediated hydroxymethylation. Base-resolution methylome analysis reveals progressive DNA demethylation to basal levels in week 5-7 in vivo hPGCs. Concurrently, hPGCs undergo chromatin reorganization, X reactivation, and imprint erasure. Despite global hypomethylation, evolutionarily young and potentially hazardous retroelements, like SVA, remain methylated. Remarkably, some loci associated with metabolic and neurological disorders are also resistant to DNA demethylation, revealing potential for transgenerational epigenetic inheritance that may have phenotypic consequences. We provide comprehensive insight on early human germline transcriptional network and epigenetic reprogramming that subsequently impacts human development and disease.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Células Germinativas/metabolismo , Animales , Metilación de ADN , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones , Regiones Promotoras Genéticas , Retroelementos
3.
Cell ; 160(1-2): 253-68, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25543152

RESUMEN

Specification of primordial germ cells (PGCs) marks the beginning of the totipotent state. However, without a tractable experimental model, the mechanism of human PGC (hPGC) specification remains unclear. Here, we demonstrate specification of hPGC-like cells (hPGCLCs) from germline competent pluripotent stem cells. The characteristics of hPGCLCs are consistent with the embryonic hPGCs and a germline seminoma that share a CD38 cell-surface marker, which collectively defines likely progression of the early human germline. Remarkably, SOX17 is the key regulator of hPGC-like fate, whereas BLIMP1 represses endodermal and other somatic genes during specification of hPGCLCs. Notable mechanistic differences between mouse and human PGC specification could be attributed to their divergent embryonic development and pluripotent states, which might affect other early cell-fate decisions. We have established a foundation for future studies on resetting of the epigenome in hPGCLCs and hPGCs for totipotency and the transmission of genetic and epigenetic information.


Asunto(s)
Diferenciación Celular , Células Germinativas/citología , Factores de Transcripción SOXF/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Línea Celular Tumoral , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Células Germinativas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/metabolismo , Seminoma/metabolismo , Análisis de Secuencia de ARN
4.
Cell ; 153(4): 737-9, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663772

RESUMEN

Epigenetic reprogramming of parental genomes following fertilization is important to ensure compatibility for totipotency and development thereafter. New studies by Jiang et al. and Potok et al. now demonstrate how the parental DNA methylomes are reset in zebrafish and reveal striking differences from events in mammals.

5.
Genes Cells ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811355

RESUMEN

DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.

6.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30257965

RESUMEN

An intricate link is becoming apparent between metabolism and cellular identities. Here, we explore the basis for such a link in an in vitro model for early mouse embryonic development: from naïve pluripotency to the specification of primordial germ cells (PGCs). Using single-cell RNA-seq with statistical modelling and modulation of energy metabolism, we demonstrate a functional role for oxidative mitochondrial metabolism in naïve pluripotency. We link mitochondrial tricarboxylic acid cycle activity to IDH2-mediated production of alpha-ketoglutarate and through it, the activity of key epigenetic regulators. Accordingly, this metabolite has a role in the maintenance of naïve pluripotency as well as in PGC differentiation, likely through preserving a particular histone methylation status underlying the transient state of developmental competence for the PGC fate. We reveal a link between energy metabolism and epigenetic control of cell state transitions during a developmental trajectory towards germ cell specification, and establish a paradigm for stabilizing fleeting cellular states through metabolic modulation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Ácidos Cetoglutáricos/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Animales , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Células Madre Embrionarias/fisiología , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Germinativas/fisiología , Ácidos Cetoglutáricos/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Pluripotentes/fisiología
7.
Biol Reprod ; 108(6): 887-901, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37040346

RESUMEN

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of "heterosis" and perhaps is more significant to study hybrid gamete formation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Caballos , Animales , Reprogramación Celular , Equidae , Células Cultivadas , Diferenciación Celular/genética , Fibroblastos , Factor 3 de Transcripción de Unión a Octámeros/genética
9.
Nature ; 546(7658): 416-420, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607482

RESUMEN

Human primordial germ cells (hPGCs), the precursors of sperm and eggs, originate during weeks 2-3 of early post-implantation development. Using in vitro models of hPGC induction, recent studies have suggested that there are marked mechanistic differences in the specification of human and mouse PGCs. This may be due in part to the divergence in their pluripotency networks and early post-implantation development. As early human embryos are not accessible for direct study, we considered alternatives including porcine embryos that, as in humans, develop as bilaminar embryonic discs. Here we show that porcine PGCs originate from the posterior pre-primitive-streak competent epiblast by sequential upregulation of SOX17 and BLIMP1 in response to WNT and BMP signalling. We use this model together with human and monkey in vitro models simulating peri-gastrulation development to show the conserved principles of epiblast development for competency for primordial germ cell fate. This process is followed by initiation of the epigenetic program and regulated by a balanced SOX17-BLIMP1 gene dosage. Our combinatorial approach using human, porcine and monkey in vivo and in vitro models provides synthetic insights into early human development.


Asunto(s)
Diferenciación Celular , Desarrollo Embrionario , Células Germinativas/citología , Macaca fascicularis/embriología , Modelos Biológicos , Células Madre Pluripotentes/citología , Porcinos/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Linaje de la Célula , Cuerpos Embrioides/citología , Epigénesis Genética , Femenino , Gastrulación , Dosificación de Gen , Células Germinativas/metabolismo , Estratos Germinativos/citología , Humanos , Técnicas In Vitro , Masculino , Modelos Animales , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Línea Primitiva/citología , Proteínas Represoras/genética , Factores de Transcripción SOXF/genética , Vía de Señalización Wnt
10.
Nat Rev Genet ; 17(10): 585-600, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27573372

RESUMEN

Primordial germ cells (PGCs), the precursors of sperm and eggs, are established in perigastrulation-stage embryos in mammals. Signals from extra-embryonic tissues induce a unique gene regulatory network in germline-competent cells for PGC specification. This network also initiates comprehensive epigenome resetting, including global DNA demethylation and chromatin reorganization. Mouse germline development has been studied extensively, but the extent to which such knowledge applies to humans was unclear. Here, we review the latest advances in human PGC specification and epigenetic reprogramming. The overall developmental dynamics of human and mouse germline cells appear to be similar, but there are crucial mechanistic differences in PGC specification, reflecting divergence in the regulation of pluripotency and early development.


Asunto(s)
Metilación de ADN , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Células Germinativas , Animales , Humanos , Ratones , Transducción de Señal
11.
Nature ; 529(7586): 403-407, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26751055

RESUMEN

Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Células Germinativas/citología , Células Germinativas/metabolismo , Estratos Germinativos/citología , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias de Ratones/citología , Factores de Transcripción/genética , Activinas/farmacología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN , Epigénesis Genética , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Proteínas de Homeodominio/antagonistas & inhibidores , Masculino , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Unión Proteica , Proteínas de Unión al ARN , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Factores de Transcripción/metabolismo
12.
Mol Cell ; 55(2): 319-31, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25038413

RESUMEN

Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Transcriptoma , Animales , Células Cultivadas , Epigénesis Genética , Perfilación de la Expresión Génica , Hibridación Fluorescente in Situ , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
13.
Mol Cell ; 56(4): 564-79, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25457166

RESUMEN

Primordial germ cells (PGCs) and preimplantation embryos undergo epigenetic reprogramming, which includes comprehensive DNA demethylation. We found that PRMT5, an arginine methyltransferase, translocates from the cytoplasm to the nucleus during this process. Here we show that conditional loss of PRMT5 in early PGCs causes complete male and female sterility, preceded by the upregulation of LINE1 and IAP transposons as well as activation of a DNA damage response. Similarly, loss of maternal-zygotic PRMT5 also leads to IAP upregulation. PRMT5 is necessary for the repressive H2A/H4R3me2s chromatin modification on LINE1 and IAP transposons in PGCs, directly implicating this modification in transposon silencing during DNA hypomethylation. PRMT5 translocates back to the cytoplasm subsequently, to participate in the previously described PIWI-interacting RNA (piRNA) pathway that promotes transposon silencing via de novo DNA remethylation. Thus, PRMT5 is directly involved in genome defense during preimplantation development and in PGCs at the time of global DNA demethylation.


Asunto(s)
Blastocisto/enzimología , Metilación de ADN , Inestabilidad Genómica , Óvulo/enzimología , Proteína Metiltransferasas/fisiología , Espermatozoides/enzimología , Animales , Apoptosis , Blastocisto/citología , Células Cultivadas , Daño del ADN , Elementos Transponibles de ADN , Desarrollo Embrionario , Células Madre Embrionarias/enzimología , Femenino , Histonas/metabolismo , Masculino , Ratones Transgénicos , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas
14.
Development ; 145(16)2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30037844

RESUMEN

In mice, primordial germ cells (PGCs), the precursors of eggs and sperm, originate from pregastrulation postimplantation embryos. By contrast, the origin of human PGCs (hPGCs) has been less clear and has been difficult to study because of the technical and ethical constraints that limit direct studies on human embryos. In recent years, however, in vitro simulation models using human pluripotent stem cells, together with surrogate non-rodent mammalian embryos, have provided insights and experimental approaches to address this issue. Here, we review these studies, which suggest that the posterior epiblast and/or the nascent amnion in pregastrulation human embryos is a likely source of hPGCs, and that a different gene regulatory network controls PGCs in humans compared with in the mouse. Such studies on the origins and mechanisms of hPGC specification prompt further consideration of the somatic cell fate decisions that occur during early human development.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Germinativas/fisiología , Células Madre Embrionarias Humanas/fisiología , Animales , Diferenciación Celular/genética , Embrión de Mamíferos , Células Madre Embrionarias/fisiología , Epigénesis Genética , Redes Reguladoras de Genes , Estratos Germinativos/embriología , Estratos Germinativos/fisiología , Células Madre Embrionarias Humanas/citología , Humanos , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología
15.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30185410

RESUMEN

The precise control of gene expression by transcription factor networks is crucial to organismal development. The predominant approach for mapping transcription factor-chromatin interactions has been chromatin immunoprecipitation (ChIP). However, ChIP requires a large number of homogeneous cells and antisera with high specificity. A second approach, DamID, has the drawback that high levels of Dam methylase are toxic. Here, we modify our targeted DamID approach (TaDa) to enable cell type-specific expression in mammalian systems, generating an inducible system (mammalian TaDa or MaTaDa) to identify genome-wide protein/DNA interactions in 100 to 1000 times fewer cells than ChIP-based approaches. We mapped the binding sites of two key pluripotency factors, OCT4 and PRDM14, in mouse embryonic stem cells, epiblast-like cells and primordial germ cell-like cells (PGCLCs). PGCLCs are an important system for elucidating primordial germ cell development in mice. We monitored PRDM14 binding during the specification of PGCLCs, identifying direct targets of PRDM14 that are key to understanding its crucial role in PGCLC development. We show that MaTaDa is a sensitive and accurate method for assessing cell type-specific transcription factor binding in limited numbers of cells.


Asunto(s)
Metilación de ADN/genética , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Cromatina/metabolismo , Proteínas de Unión al ADN , Genoma , Células Germinativas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , Proteínas de Unión al ARN
16.
Trends Genet ; 32(10): 592-595, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27543987

RESUMEN

Mouse pluripotent embryonic stem (ES) cells can exist in distinct yet interchangeable epigenetic states dictated by their culture environment. Previous reports have shown that naïve pluripotent cells grown in the presence of 2i are characterised by global DNA hypomethylation and changes in the abundance and distribution of histone modifications. New research provides insights regarding how this might be achieved.


Asunto(s)
Metilación de ADN/genética , Células Madre Embrionarias , Epigénesis Genética , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Código de Histonas/genética , Ratones
17.
Bioinformatics ; 34(17): i1005-i1013, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423108

RESUMEN

Motivation: A common class of behaviour encountered in the biological sciences involves branching and recombination. During branching, a statistical process bifurcates resulting in two or more potentially correlated processes that may undergo further branching; the contrary is true during recombination, where two or more statistical processes converge. A key objective is to identify the time of this bifurcation (branch or recombination time) from time series measurements, e.g. by comparing a control time series with perturbed time series. Gaussian processes (GPs) represent an ideal framework for such analysis, allowing for nonlinear regression that includes a rigorous treatment of uncertainty. Currently, however, GP models only exist for two-branch systems. Here, we highlight how arbitrarily complex branching processes can be built using the correct composition of covariance functions within a GP framework, thus outlining a general framework for the treatment of branching and recombination in the form of branch-recombinant Gaussian processes (B-RGPs). Results: We first benchmark the performance of B-RGPs compared to a variety of existing regression approaches, and demonstrate robustness to model misspecification. B-RGPs are then used to investigate the branching patterns of Arabidopsis thaliana gene expression following inoculation with the hemibotrophic bacteria, Pseudomonas syringae DC3000, and a disarmed mutant strain, hrpA. By grouping genes according to the number of branches, we could naturally separate out genes involved in basal immune response from those subverted by the virulent strain, and show enrichment for targets of pathogen protein effectors. Finally, we identify two early branching genes WRKY11 and WRKY17, and show that genes that branched at similar times to WRKY11/17 were enriched for W-box binding motifs, and overrepresented for genes differentially expressed in WRKY11/17 knockouts, suggesting that branch time could be used for identifying direct and indirect binding targets of key transcription factors. Availability and implementation: https://github.com/cap76/BranchingGPs. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas syringae , Factores de Transcripción , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biología Computacional , Pseudomonas syringae/genética , Factores de Transcripción/metabolismo
18.
Proc Natl Acad Sci U S A ; 112(31): E4236-45, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26199412

RESUMEN

Dioxygenases of the TET (Ten-Eleven Translocation) family produce oxidized methylcytosines, intermediates in DNA demethylation, as well as new epigenetic marks. Here we show data suggesting that TET proteins maintain the consistency of gene transcription. Embryos lacking Tet1 and Tet3 (Tet1/3 DKO) displayed a strong loss of 5-hydroxymethylcytosine (5hmC) and a concurrent increase in 5-methylcytosine (5mC) at the eight-cell stage. Single cells from eight-cell embryos and individual embryonic day 3.5 blastocysts showed unexpectedly variable gene expression compared with controls, and this variability correlated in blastocysts with variably increased 5mC/5hmC in gene bodies and repetitive elements. Despite the variability, genes encoding regulators of cholesterol biosynthesis were reproducibly down-regulated in Tet1/3 DKO blastocysts, resulting in a characteristic phenotype of holoprosencephaly in the few embryos that survived to later stages. Thus, TET enzymes and DNA cytosine modifications could directly or indirectly modulate transcriptional noise, resulting in the selective susceptibility of certain intracellular pathways to regulation by TET proteins.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Proto-Oncogénicas/metabolismo , Transcriptoma/genética , Animales , Biomarcadores/metabolismo , Blastocisto/metabolismo , Blastómeros/metabolismo , Blastómeros/patología , Linaje de la Célula , Colesterol/biosíntesis , ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Dioxigenasas , Regulación hacia Abajo/genética , Pérdida del Embrión/metabolismo , Pérdida del Embrión/patología , Embrión de Mamíferos/patología , Impresión Genómica , Proteínas Hedgehog/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética
19.
Genes Dev ; 24(24): 2772-7, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21159818

RESUMEN

Prmt5, an arginine methyltransferase, has multiple roles in germ cells, and possibly in pluripotency. Here we show that loss of Prmt5 function is early embryonic-lethal due to the abrogation of pluripotent cells in blastocysts. Prmt5 is also up-regulated in the cytoplasm during the derivation of embryonic stem (ES) cells together with Stat3, where they persist to maintain pluripotency. Prmt5 in association with Mep50 methylates cytosolic histone H2A (H2AR3me2s) to repress differentiation genes in ES cells. Loss of Prmt5 or Mep50 results in derepression of differentiation genes, indicating the significance of the Prmt5/Mep50 complex for pluripotency, which may occur in conjunction with the leukemia inhibitory factor (LIF)/Stat3 pathway.


Asunto(s)
Desarrollo Embrionario , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Proteína Metiltransferasas/fisiología , Animales , Diferenciación Celular/genética , Citoplasma/química , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Metilación , Ratones , Proteína-Arginina N-Metiltransferasas
20.
Development ; 141(2): 245-52, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24381195

RESUMEN

Primordial germ cells (PGCs) are the precursors of sperm and eggs, which generate a new organism that is capable of creating endless new generations through germ cells. PGCs are specified during early mammalian postimplantation development, and are uniquely programmed for transmission of genetic and epigenetic information to subsequent generations. In this Primer, we summarise the establishment of the fundamental principles of PGC specification during early development and discuss how it is now possible to make mouse PGCs from pluripotent embryonic stem cells, and indeed somatic cells if they are first rendered pluripotent in culture.


Asunto(s)
Células Germinativas/citología , Células Madre/citología , Animales , Desdiferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Femenino , Gametogénesis/genética , Gametogénesis/fisiología , Redes Reguladoras de Genes , Células Germinativas/metabolismo , Humanos , Masculino , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA