Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pathol ; 257(1): 82-95, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35064579

RESUMEN

Oncostatin M (OSM) is a pleiotropic cytokine of the interleukin (IL)-6 family that contributes to the progression of chronic liver disease. Here we investigated the role of OSM in the development and progression of hepatocellular carcinoma (HCC) in non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH). The role of OSM was investigated in (1) selected cohorts of NAFLD/NASH HCC patients, (2) liver cancer cells exposed to human recombinant OSM or stably transfected to overexpress human OSM, (3) murine HCC xenografts, and (4) a murine NASH-related model of hepatic carcinogenesis. OSM was found to be selectively overexpressed in HCC cells of NAFLD/NASH patients, depending on tumor grade. OSM serum levels, barely detectable in patients with simple steatosis or NASH, were increased in patients with cirrhosis and more evident in those carrying HCC. In this latter group, OSM serum levels were significantly higher in the subjects with intermediate/advanced HCCs and correlated with poor survival. Cell culture experiments indicated that OSM upregulation in hepatic cancer cells contributes to HCC progression by inducing epithelial-to-mesenchymal transition and increased invasiveness of cancer cells as well as by inducing angiogenesis, which is of critical relevance. In murine xenografts, OSM overexpression was associated with slower tumor growth but an increased rate of lung metastases. Overexpression of OSM and its positive correlation with the angiogenic switch were also confirmed in a murine model of NAFLD/NASH-related hepatocarcinogenesis. Consistent with this, analysis of liver specimens from human NASH-related HCCs with vascular invasion showed that OSM was expressed by liver cancer cells invading hepatic vessels. In conclusion, OSM upregulation appears to be a specific feature of HCC arising on a NAFLD/NASH background, and it correlates with clinical parameters and disease outcome. Our data highlight a novel pro-carcinogenic contribution for OSM in NAFLD/NASH, suggesting a role of this factor as a prognostic marker and a putative potential target for therapy. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Oncostatina M , Animales , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología
2.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108625

RESUMEN

Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Glucólisis , Microambiente Tumoral , Inmunidad
3.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36901997

RESUMEN

Platelets, traditionally known for their roles in hemostasis and coagulation, are the most prevalent blood component after erythrocytes (150,000-400,000 platelets/µL in healthy humans). However, only 10,000 platelets/µL are needed for vessel wall repair and wound healing. Increased knowledge of the platelet's role in hemostasis has led to many advances in understanding that they are crucial mediators in many other physiological processes, such as innate and adaptive immunity. Due to their multiple functions, platelet dysfunction is involved not only in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism, but also in several other disorders, such as tumors, autoimmune diseases, and neurodegenerative diseases. On the other hand, thanks to their multiple functions, nowadays platelets are therapeutic targets in different pathologies, in addition to atherothrombotic diseases; they can be used as an innovative drug delivery system, and their derivatives, such as platelet lysates and platelet extracellular vesicles (pEVs), can be useful in regenerative medicine and many other fields. The protean role of platelets, from the name of Proteus, a Greek mythological divinity who could take on different shapes or aspects, is precisely the focus of this review.


Asunto(s)
Plaquetas , Trombosis , Humanos , Plaquetas/fisiología , Hemostasis/fisiología , Coagulación Sanguínea , Inmunidad Adaptativa
4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769276

RESUMEN

Activated T cells express the inducible T-cell co-stimulator (ICOS) that, upon binding to its ubiquitously expressed ligand (ICOSL), regulates the immune response and tissue repair. We sought to determine the effect of ICOS:ICOSL interaction on human M1 and M2 macrophages. M1 and M2 macrophages were polarized from monocyte-derived macrophages, and the effect of a soluble recombinant form of ICOS (ICOS-CH3) was assessed on cytokine production and cell migration. We show that ICOS-CH3 treatment increased the secretion of CCL3 and CCL4 in resting M1 and M2 cells. In LPS-treated M1 cells, ICOS-CH3 inhibited the secretion of TNF-α, IL-6, IL-10 and CCL4, while it increased that of IL-23. In contrast, M2 cells treated with LPS + IL4 displayed enhanced secretion of IL-6, IL-10, CCL3 and CCL4. In CCL7- or osteopontin-treated M1 cells, ICOS-CH3 boosted the migration rate of M1 cells while it decreased that of M2 cells. Finally, ß-Pix expression was upregulated in M1 cells and downregulated in M2 cells by treatment with ICOS-CH3. These findings suggest that ICOSL activation modulates the activity of human M1 and M2 cells, thereby eliciting an overall anti-inflammatory effect consistent with its role in promoting tissue repair.


Asunto(s)
Interleucina-10 , Interleucina-6 , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles , Lipopolisacáridos/farmacología , Macrófagos
5.
Clin Sci (Lond) ; 136(9): 643-656, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35438166

RESUMEN

Annexin A1 (AnxA1) is an important effector in the resolution of inflammation which is involved in modulating hepatic inflammation in nonalcoholic steatohepatitis (NASH). In the present study, we have investigated the possible effects of treatment with AnxA1 for counteracting the progression of experimental NASH. NASH was induced in C57BL/6 mice by feeding methionine-choline deficient (MCD) or Western diets (WDs) and the animals were treated for 4-6 weeks with human recombinant AnxA1 (hrAnxA1; 1 µg, daily IP) or saline once NASH was established. In both experimental models, treatment with hrAnxA1 improved parenchymal injury and lobular inflammation without interfering with the extension of steatosis. Furthermore, administration of hrAnxA1 significantly attenuated the hepatic expression of α1-procollagen and TGF-ß1 and reduced collagen deposition, as evaluated by collagen Sirius Red staining. Flow cytometry and immunohistochemistry showed that hrAnxA1 did not affect the liver recruitment of macrophages, but strongly interfered with the formation of crown-like macrophage aggregates and reduced their capacity of producing pro-fibrogenic mediators like osteopontin (OPN) and galectin-3 (Gal-3). This effect was related to an interference with the acquisition of a specific macrophage phenotype characterized by the expression of the Triggering Receptor Expressed on Myeloid cells 2 (TREM-2), CD9 and CD206, previously associated with NASH evolution to cirrhosis. Collectively, these results indicate that, beside ameliorating hepatic inflammation, AnxA1 is specifically effective in preventing NASH-associated fibrosis by interfering with macrophage pro-fibrogenic features. Such a novel function of AnxA1 gives the rationale for the development of AnxA1 analogs for the therapeutic control of NASH evolution.


Asunto(s)
Anexina A1 , Enfermedad del Hígado Graso no Alcohólico , Animales , Anexina A1/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Metionina , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
6.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806368

RESUMEN

BACKGROUND: ICOS and its ligand ICOSL are immune receptors whose interaction triggers bidirectional signals that modulate the immune response and tissue repair. AIM: The aim of this study was to assess the in vivo effects of ICOSL triggering by ICOS-Fc, a recombinant soluble form of ICOS, on skin wound healing. METHODS: The effect of human ICOS-Fc on wound healing was assessed, in vitro, and, in vivo, by skin wound healing assay using ICOS-/- and ICOSL-/- knockout (KO) mice and NOD-SCID-IL2R null (NSG) mice. RESULTS: We show that, in wild type mice, treatment with ICOS-Fc improves wound healing, promotes angiogenesis, preceded by upregulation of IL-6 and VEGF expression; increases the number of fibroblasts and T cells, whereas it reduces that of neutrophils; and increases the number of M2 vs. M1 macrophages. Fittingly, ICOS-Fc enhanced M2 macrophage migration, while it hampered that of M1 macrophages. ICOS-/- and ICOSL-/- KO, and NSG mice showed delayed wound healing, and treatment with ICOS-Fc improved wound closure in ICOS-/- and NSG mice. CONCLUSION: These data show that the ICOS/ICOSL network cooperates in tissue repair, and that triggering of ICOSL by ICOS-Fc improves cutaneous wound healing by increasing angiogenesis and recruitment of reparative macrophages.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Ligando Coestimulador de Linfocitos T Inducibles , Proteína Coestimuladora de Linfocitos T Inducibles , Cicatrización de Heridas , Animales , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/farmacología , Ligando Coestimulador de Linfocitos T Inducibles/genética , Ligando Coestimulador de Linfocitos T Inducibles/inmunología , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Proteínas Recombinantes/farmacología , Cicatrización de Heridas/efectos de los fármacos
7.
Hepatology ; 67(6): 2196-2214, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29266399

RESUMEN

Mechanisms underlying progression of nonalcoholic fatty liver disease (NAFLD) are still incompletely characterized. Hypoxia and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of chronic liver diseases, but the actual role of HIF-2α in the evolution of NAFLD has never been investigated in detail. In this study, we show that HIF-2α is selectively overexpressed in the cytosol and the nuclei of hepatocytes in a very high percentage (>90%) of liver biopsies from a cohort of NAFLD patients at different stages of the disease evolution. Similar features were also observed in mice with steatohepatitis induced by feeding a methionine/choline-deficient diet. Experiments performed in mice carrying hepatocyte-specific deletion of HIF-2α and related control littermates fed either a choline-deficient L-amino acid-defined or a methionine/choline-deficient diet showed that HIF-2α deletion ameliorated the evolution of NAFLD by decreasing parenchymal injury, fatty liver, lobular inflammation, and the development of liver fibrosis. The improvement in NAFLD progression in HIF-2α-deficient mice was related to a selective down-regulation in the hepatocyte production of histidine-rich glycoprotein (HRGP), recently proposed to sustain macrophage M1 polarization. In vitro experiments confirmed that the up-regulation of hepatocyte HRGP expression was hypoxia-dependent and HIF-2α-dependent. Finally, analyses performed on specimens from NAFLD patients indicated that HRGP was overexpressed in all patients showing hepatocyte nuclear staining for HIF-2α and revealed a significant positive correlation between HIF-2α and HRGP liver transcript levels in these patients. CONCLUSIONS: These results indicate that hepatocyte HIF-2α activation is a key feature in both human and experimental NAFLD and significantly contributes to the disease progression through the up-regulation of HRGP production. (Hepatology 2018;67:2196-2214).


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Hepatocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Proteínas/metabolismo , Animales , Células Cultivadas , Progresión de la Enfermedad , Humanos , Masculino , Ratones
8.
Clin Sci (Lond) ; 132(5): 609-613, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545336

RESUMEN

Drug-induced liver injury (DILI) remains a clinical challenge due to the poorly predictable outcomes. Accordingly, considerable efforts have been devoted to unravel the risk factors responsible for DILI worsening toward acute liver failure (ALF), liver transplantation (LT), and/or death. From a pathogenic point of view, exhaustion of drug metabolizing pathways, cell death mechanisms, activation of local immune cells, such as Kupffer cells, and recruitment of inflammatory leukocytes including monocytes and lymphocytes are key drivers of DILI progression. Taking into account that the liver is a sexually dimorphic organ, in the recent past several studies aimed to investigate the implications of gender differences in promoting DILI. While sex discrepancies in DILI include the hepatic drug metabolism or direct effects of steroid hormones (e.g. androgens and estrogens) on signaling pathways in the liver, relatively little is known on gender differences in modulating liver innate immune responses. In a previous issue of Clinical Science, Bizzaro and co-workers, analyzed sex-dependent differences in experimental acute liver injury and regeneration in mice. The authors observed a time-delay in the recovery process in male animals associated with a higher recruitment of monocytes expressing the androgen receptor (AR) as compared with females. Treatment of male mice with the pharmacological AR antagonist flutamide reduced monocyte recruitment in mice. Likewise, human male patients suffering from DILI displayed higher circulating immature and potentially more inflammatory monocytes. Altogether, these observations provide new insights into sex-dependent immune mechanisms in the context of acute liver injury, suggesting gender disparate inflammatory and regenerative responses following DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hepatitis/fisiopatología , Inmunidad Innata , Regeneración Hepática , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Femenino , Hepatitis/metabolismo , Humanos , Macrófagos del Hígado/metabolismo , Linfocitos/metabolismo , Masculino , Ratones Endogámicos BALB C , Modelos Biológicos , Monocitos/metabolismo , Factores Sexuales , Transducción de Señal
9.
Clin Sci (Lond) ; 131(17): 2289-2301, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28739980

RESUMEN

The chemokine fractalkine (CX3CL1) and its receptor CX3CR1 are known to mediate leukocyte chemotaxis, adhesion and survival. In the liver, CX3CR1 is expressed on multiple cell types including monocytes and dendritic cells. However, the function of CX3CR1 on hepatic dendritic cells (HDCs) is still poorly understood. In this study, we investigated the role of CX3CR1 on mouse HDCs during homeostasis and following acute liver injury. At homeostasis, CX3CR1-expression was detected among CD11b+/CD103- type 2 myeloid HDCs (mHDCs) and these cells were characterized by the production of IL-10.   Mice treatment with the hepatotoxic agent CCl4 up-regulated liver IL-10 expression and stimulated the expansion of CX3CR1+ mHDCs which also showed a more mature phenotype. The absence of CX3CR1 in naïve CX3CR1gfp/gfp mice specifically reduced the CD11b+/IL-10+ mHDCs as compared to CX3CR1-proficient animals (CX3CR1+/gfp).  Following CCl4 poisoning, the liver recruitment and maturation of CD11b+ mHDCs was significantly attenuated in CX3CR1gfp/gfp mice. Furthermore, these mice suffered more severe hepatic injury and inflammation than CX3CR1+/gfp mice and showed a delated recovery from liver damage. Such a worsening of liver injury in CX3CR1gfp/gfp mice was associated with an impaired up-regulation of hepatic IL-10 expression and a lower number of IL-10 producing CD11b+ mHDCs. Consistently, IL-10 inactivation enhanced hepatic injury and inflammation in CX3CR1+/gfp mice receiving CCl4 Altogether, these data indicate a novel role of the CX3CL1/CX3CR1 axis in liver type 2 mHDC functions, pointing out the importance of CX3CR1 in promoting IL-10-mediated anti-inflammatory actions of HDCs.

10.
Hepatology ; 59(3): 886-97, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24115128

RESUMEN

UNLABELLED: Previous studies have shown that human nonalcoholic steatohepatitis (NASH) is often associated with the presence of circulating antibodies against protein adducted by lipid peroxidation products. Here we used the methionine-choline deficient (MCD) model of NASH to characterize the possible involvement of adaptive immunity in NASH. In mice fed up to 8 weeks with the MCD diet the extension of liver injury and lobular inflammation paralleled the development of immunoglobulin G (IgG) against malonyldialdehyde (MDA) and 4-hydroxynonenal (4-HNE)-derived antigens as well as with the hepatic recruitment of CD4(+) and CD8(+) T-lymphocytes responsive to the same antigens. Moreover, in these animals the individual IgG reactivity against MDA-adducts positively correlated with transaminase release and hepatic tumor necrosis factor alpha (TNF-α) expression. To substantiate the role of immune responses triggered by oxidative stress in the progression of NASH, mice were immunized with MDA-adducted bovine serum albumin (MDA-BSA) before feeding the MCD diet. MDA-BSA immunization did not affect control mice livers, but further stimulated transaminase release, lobular inflammation, and the hepatic expression of proinflammatory cytokine in MCD-fed mice. The increased severity of NASH in immunized MCD-fed mice involved liver recruitment and the T helper (Th)-1 activation of CD4(+) T cells that, in turn, further stimulated macrophage M1 responses. Moreover, hepatic fibrosis was also evident in these animals in relation with an IL-15-mediated increase of natural killer T-cells (NKT) and the up-regulation in liver production of osteopontin by NKT cells and hepatic macrophages. CONCLUSION: These results indicate that oxidative stress can contribute to the progression of NASH by stimulating both humoral and cellular immune responses, pointing to the possible role of adaptive immunity in the pathogenesis of the disease.


Asunto(s)
Inmunidad Adaptativa/inmunología , Hígado Graso/inmunología , Hígado Graso/metabolismo , Estrés Oxidativo/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Células Asesinas Naturales/inmunología , Peroxidación de Lípido/inmunología , Hígado/inmunología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico
11.
Hepatology ; 60(2): 531-44, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24668763

RESUMEN

UNLABELLED: Annexin A1 (AnxA1) is an effector of the resolution of inflammation and is highly effective in terminating acute inflammatory responses. However, its role in chronic settings is less investigated. Because changes in AnxA1 expression within adipose tissue characterize obesity in mice and humans, we queried a possible role for AnxA1 in the pathogenesis of nonalcoholic steatohepatitis (NASH), a disease commonly associated with obesity. NASH was induced in wild-type (WT) and AnxA1 knockout (AnxA1 KO) C57BL/6 mice by feeding a methionine-choline deficient (MCD) diet up to 8 weeks. In MCD-fed WT mice, hepatic AnxA1 increased in parallel with progression of liver injury. This mediator was also detected in liver biopsies from patients with NASH and its degree of expression inversely correlated with the extent of fibrosis. In both humans and rodents, AnxA1 production was selectively localized in liver macrophages. NASH in AnxA1 KO mice was characterized by enhanced lobular inflammation resulting from increased macrophage recruitment and exacerbation of the M1 phenotype. Consistently, in vitro addition of recombinant AnxA1 to macrophages isolated from NASH livers down-modulated M1 polarization through stimulation of interleukin-10 production. Furthermore, the degree of hepatic fibrosis was enhanced in MCD-fed AnxA1 KO mice, an effect associated with augmented liver production of the profibrotic lectin, galectin-3. Accordingly, AnxA1 addition to isolated hepatic macrophages reduced galectin-3 expression. CONCLUSIONS: Macrophage-derived AnxA1 plays a functional role in modulating hepatic inflammation and fibrogenesis during NASH progression, suggesting the possible use of AnxA1 analogs for therapeutic control of this disease.


Asunto(s)
Anexina A1/inmunología , Hígado Graso/inmunología , Hepatitis/inmunología , Macrófagos/inmunología , Animales , Anexina A1/genética , Deficiencia de Colina/genética , Deficiencia de Colina/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hígado Graso/genética , Hepatitis/genética , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/inmunología , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Obesidad/genética , Obesidad/inmunología
12.
Clin Sci (Lond) ; 129(9): 797-808, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26253086

RESUMEN

Liver monocytes play a major role in the development of NASH (non-alcoholic steatohepatitis). In inflamed tissues, monocytes can differentiate in both macrophages and dendritic cells. In the present study, we investigated the role of moDCs (monocyte-derived inflammatory dendritic cells) in experimental steatohepatitis induced in C57BL/6 mice by feeding on a MCD (methionine/choline-deficient) diet. The evolution of steatohepatitis was characterized by an increase in hepatic CD45+ / CD11b+ myeloid cells displaying the monocyte/macrophage marker F4-80(+). In the early phases (4 weeks of treatment), Ly6C(high)/CD11b(+)/F4-80(+) inflammatory macrophages predominated. However, their frequency did not grow further with the disease progression (8 weeks of treatment), when a 4-fold expansion of CD11b(+)/F4-80(+) cells featuring the fractalkine receptor (CX3CR1) was evident. These CX3CR1+ cells were also characterized by the combined expression of inflammatory monocyte (Ly6C, CD11b) and dendritic cell (CD11c, MHCII) markers as well as by a sustained TNFα (tumour necrosis factor α) production, suggesting monocyte differentiation into inflammatory moDCs. The expansion of TNFα-producing CX3CR1+ moDCs was associated with an elevation in hepatic and circulating TNFα level and with the worsening of parenchymal injury. Hydrogen sulfide (H2S) has been shown to interfere with CX3CR1 up-regulation in monocyte-derived cells exposed to pro-inflammatory stimuli. Treating 4-week-MCD-fed mice with the H2S donor NaHS while continuing on the same diet prevented the accumulation of TNFα-producing CX3CR1+ moDCs without interfering with hepatic macrophage functions. Furthermore, NaHS reduced hepatic and circulating TNFα levels and ameliorated transaminase release and parenchymal injury. Altogether, these results show that inflammatory CX3CR1+ moDCs contributed in sustaining inflammation and liver injury during steatohepatitis progression.


Asunto(s)
Células Dendríticas/inmunología , Inflamación/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Receptores de Quimiocina/inmunología , Actinas/genética , Actinas/inmunología , Actinas/metabolismo , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Antígenos de Diferenciación/metabolismo , Antígenos Ly/genética , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocinas CX3C , Deficiencia de Colina , Células Dendríticas/metabolismo , Dieta/efectos adversos , Progresión de la Enfermedad , Citometría de Flujo , Expresión Génica/inmunología , Inmunohistoquímica , Inflamación/genética , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Metionina/deficiencia , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfuros/metabolismo , Sulfuros/farmacología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/inmunología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
13.
Exp Mol Pathol ; 99(1): 155-62, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26112094

RESUMEN

Nonalcoholic steatohepatitis (NASH) is characterized by extensive hepatic monocyte infiltration and monocyte-derived macrophages have an important role in regulating the disease evolution. However, little is known about the functional changes occurring in liver macrophages during NASH progression. In this study, we investigated phenotypic and functional modifications of hepatic macrophages in experimental NASH induced by feeding C57BL/6 mice with a methionine-choline deficient (MCD) diet up to 8weeks. In mice with steatohepatitis liver F4/80-positive macrophages increased in parallel with the disease progression and formed small clusters of enlarged and vacuolated cells. At immunofluorescence these cells contained lipid vesicles positive for the apoptotic cell marker Annexin V suggesting the phagocytosis of apoptotic bodies derived from dead fat-laden hepatocytes. Flow cytometry revealed that these enlarged macrophages expressed inflammatory monocyte (CD11b, Ly6C, TNF-α) markers. However, as compared to regular size macrophages the enlarged sub-set was characterized by an enhanced production of arginase-1 and of the anti-inflammatory mediators IL-10 and annexin A1. Similar vacuolated macrophages producing annexin A1 were also evident in liver biopsies of NASH patients. In mice with NASH, the accumulation of enlarged F4/80(+) cells paralleled with a decline in the expression of the macrophage M1 activation markers iNOS, IL-12 and CXCL10, while the levels of M2 polarization markers arginase-1 and MGL-1 were unchanged. Interestingly, the lowering of IL-12 expression mainly involved the macrophage sub-set with regular size. We conclude that during the progression of NASH fat accumulation within liver macrophages promotes the production of anti-inflammatory mediators that influence hepatic inflammatory responses.


Asunto(s)
Inflamación/patología , Macrófagos/citología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Alanina Transaminasa/sangre , Animales , Anexina A1/metabolismo , Antígenos Ly/metabolismo , Arginasa/metabolismo , Antígeno CD11b/metabolismo , Quimiocina CXCL10/metabolismo , Proteínas del Citoesqueleto , Dieta , Progresión de la Enfermedad , Fibrosis , Proteínas de Homeodominio/metabolismo , Humanos , Inflamación/complicaciones , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Triglicéridos/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Supresoras de Tumor/metabolismo
14.
Front Immunol ; 15: 1342404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469298

RESUMEN

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), previously non-alcoholic fatty liver disease (NAFLD), is a leading cause of chronic liver disease worldwide. In 20%-30% of MASLD patients, the disease progresses to metabolic dysfunction-associated steatohepatitis (MASH, previously NASH) which can lead to fibrosis/cirrhosis, liver failure as well as hepatocellular carcinoma (HCC). Here we investigated the role of histidine-rich glycoprotein (HRG), a plasma protein produced by hepatocytes, in MASLD/MASH progression and HCC development. Methods: The role of HRG was investigated by morphological, cellular, and molecular biology approaches in (a) HRG knock-out mice (HRG-/- mice) fed on a CDAA dietary protocol or a MASH related diethyl-nitrosamine/CDAA protocol of hepatocarcinogenesis, (b) THP1 monocytic cells treated with purified HRG, and (c) well-characterized cohorts of MASLD patients with or without HCC. Results: In non-neoplastic settings, murine and clinical data indicate that HRG increases significantly in parallel with disease progression. In particular, in MASLD/MASH patients, higher levels of HRG plasma levels were detected in subjects with extensive fibrosis/cirrhosis. When submitted to the pro-carcinogenic protocol, HRG-/- mice showed a significant decrease in the volume and number of HCC nodules in relation to decreased infiltration of macrophages producing pro-inflammatory mediators, including IL-1ß, IL-6, IL-12, IL-10, and VEGF as well as impaired angiogenesis. The histopathological analysis (H-score) of MASH-related HCC indicate that the higher HRG positivity in peritumoral tissue significantly correlates with a lower overall patient survival and an increased recurrence. Moreover, a significant increase in HRG plasma levels was detected in cirrhotic (F4) patients and in patients carrying HCC vs. F0/F1 patients. Conclusion: Murine and clinical data indicate that HRG plays a significant role in MASLD/MASH progression to HCC by supporting a specific population of tumor-associated macrophages with pro-inflammatory response and pro-angiogenetic capabilities which critically support cancer cell survival. Furthermore, our data suggest HRG as a possible prognostic predictor in HCC patients with MASLD/MASH-related HCCs.


Asunto(s)
Acetamidas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Proteínas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , Carcinogénesis , Cirrosis Hepática/etiología , Progresión de la Enfermedad
15.
Clin Sci (Lond) ; 124(4): 279-87, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22970906

RESUMEN

Growing evidence indicates that NF-κB (nuclear factor κB) activation contributes to the pathogenesis of NASH (non-alcoholic steatohepatisis). Among the NF-κB subunits, p50/NF-κB1 has regulatory activities down-modulating NF-κB-mediated responses. In the present study, we investigated the effects of NF-κB1 deficiency on the progression of NASH induced by feeding mice on an MCD (methionine/choline-deficient) diet. Following 4 weeks on the MCD diet, steatosis, ALT (alanine aminotransferase) release, hepatocyte apoptosis, lobular inflammation and TNFα (tumour necrosis factor α) production were higher in NF-κB1(-/-) (NF-κB1-knockout) mice than in WT (wild-type) mice. NF-κB1(-/-) mice also showed appreciable centrilobular collagen deposition, an increased number of activated hepatic stellate cells and higher type-I procollagen-α and TIMP-1 (tissue inhibitor of metalloproteases-1) mRNA expression. Although NF-κB p50 homodimers regulate macrophage activation, the number of hepatic macrophages and liver mRNAs for iNOS (inducible NO synthase), IL (interleukin)-12p40, CCL2 (CC chemokine ligand 2) and CXCL10 (CXC chemokine ligand 10) were comparable in the two strains. NASH was associated with an increase in liver infiltrating T-cells that was more evident in MCD-fed NF-κB1(-/-) than in similarly treated WT mice. Flow cytorimetry showed that T-cell recruitment involved effector CD8+ T-cells without changes in the helper CD4+ T-cell fraction. Furthermore, although NASH lowered hepatic NKT cells [NK (natural killer) T-cells] in WT mice, the NKT cell pool was selectively increased in the livers of MCD-fed NF-κB1(-/-) mice. Such NKT cell recruitment was associated with an early overexpression of IL-15, a cytokine controlling NKT cell survival and maturation. In the livers of MCD-fed NF-κB1(-/-) mice, but not in those of WT littermates, we also observed an up-regulation in the production of NKT-related cytokines IFN (interferon)-γ and osteopontin. Taken together, these results indicate that NF-κB1 down-modulation enhanced NASH progression to fibrosis by favouring NKT cell recruitment, stressing the contribution of NKT cells in the pathogenesis of NASH.


Asunto(s)
Hígado Graso/etiología , Subunidad p50 de NF-kappa B/deficiencia , Células T Asesinas Naturales/metabolismo , Animales , Biomarcadores/metabolismo , Dieta , Hígado Graso/inmunología , Hígado Graso/metabolismo , Hígado Graso/patología , Citometría de Flujo , Cirrosis Hepática/etiología , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Biosci Rep ; 43(1)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36691794

RESUMEN

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the recent years nonalcoholic fatty liver disease (NAFLD) is becoming a growing cause of HCCs and the incidence of NAFLD-related HCCs is expected to further dramatically increase by the next decade. Chronic inflammation is regarded as the driving force of NAFLD progression and a key factor in hepatic carcinogenesis. Hepatic inflammation in NAFLD results from the persistent stimulation of innate immunity in response to hepatocellular injury and gut dysbiosis as well as by the activation of adaptive immunity. However, the relative roles of innate and adaptive immunity in the processes leading to HCC are still incompletely characterized. This is due to the complex interplay between different liver cell populations, which is also strongly influenced by gut-derived bacterial products, metabolic/nutritional signals. Furthermore, carcinogenic mechanisms in NAFLD/NASH appear to involve the activation of signals mediated by hypoxia inducible factors. This review discusses recent data regarding the contribution of different inflammatory cells to NAFLD-related HCC and their possible impact on patient response to current treatments.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Carcinoma Hepatocelular/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Neoplasias Hepáticas/patología , Inflamación
17.
Pharmaceutics ; 15(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37376219

RESUMEN

Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer's composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing.

18.
Front Immunol ; 14: 1290391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077334

RESUMEN

Background and aims: Inducible T-cell Co-Stimulator (ICOS) present on T-lymphocytes and its ligand ICOSL expressed by myeloid cells play multiple roles in regulating T-cell functions. However, recent evidence indicates that reverse signalling involving ICOSL is also important in directing the differentiation of monocyte-derived cells. In this study, we investigated the involvement of ICOS/ICOSL dyad in modulating macrophage functions during the evolution of metabolic dysfunction-associated steatohepatitis (MASH). Results: In animal models of MASH, ICOS was selectively up-regulated on CD8+ T-cells in parallel with an expansion of ICOSL-expressing macrophages. An increase in circulating soluble ICOSL was also evident in patients with MASH as compared to healthy individuals. ICOSL knockout (ICOSL-/-) mice receiving choline/methionine deficient (MCD) diet for 6 weeks had milder steatohepatitis than wild type mice. MASH improvement was confirmed in mice fed with cholesterol-enriched Western diet for 24 weeks in which ICOSL deficiency greatly reduced liver fibrosis along with the formation of crown-like macrophage aggregates producing the pro-fibrogenic mediators osteopontin (OPN) and galectin-3 (Gal-3). These effects associated with a selective shewing of F4-80+/CD11bhigh monocyte-derived macrophages (MoMFs) expressing the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) to CD11blow/F4-80+ cells positive for the Kupffer cell marker C-type lectin-like type 2 receptor (CLEC-2), thus indicating an increased MoMF maturation toward monocyte-derived Kupffer cells. Conclusions: These results suggest that CD8+ T-cells interaction with monocyte-derived macrophages through ICOS/ICOSL critically supports a specific subset of TREM2+-expressing cells contributing to the evolution of steatohepatitis. The data also point ICOS/ICOSL dyad as a possible target for therapeutic interventions in MASH.


Asunto(s)
Linfocitos T CD8-positivos , Hígado Graso , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Interleucina-2 , Ligandos , Transducción de Señal
19.
Clin Sci (Lond) ; 123(5): 323-32, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22439844

RESUMEN

NEFA (non-esterified 'free' fatty acid)-mediated lipotoxicity plays a critical role in the pathogenesis of NASH (non-alcoholic steatohepatitis). In the light of the growing need for new therapeutic options for NASH, we investigated the action of A2aR (adenosine A(2a) receptor) stimulation against lipotoxicity. The effects of the A(2a)R agonist CGS21680 [2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine] were evaluated 'in vitro' in liver cells exposed to SA (stearic acid) and 'in vivo' in rats with NASH induced by 8 weeks of feeding with an MCD diet (methionine/choline-deficient diet). In cultured hepatocytes, SA promoted apoptosis by inducing MKK4 (mitogen-activated protein kinase kinase 4)/SEK1 (stress-activated protein kinase/extracellular-signal-regulated kinase kinase-1) and JNK-1/2 (c-Jun N-terminal kinase-1/2) activation. CGS21680 addition prevented JNK-1/2 activation and reduced apoptosis without interfering with lipid accumulation. CGS21680 action required PI3K (phosphoinositide 3-kinase)/Akt-mediated block of MKK4/SEK1. Consistently, PI3K inhibition with wortmannin abolished the cytoprotective action of CGS21680 and reverted MKK4 inhibition. SA lipotoxicity was also prevented by transfecting HTC cells with a specific MKK4/SEK1 siRNA (small interfering RNA). In rats receiving the MCD diet, the development of NASH was associated with MKK4/SEK1 and JNK-1/2 activation. CGS21680 (0.5 mg/kg of body weight, intraperitoneal) administration to MCD-fed rats prevented JNK-1/2 activation by acting on MKK4/SEK1. CGS21680 also effectively reduced NASH-associated ALT (alanine aminotransferase) release, hepatocyte apoptosis, liver inflammation and fibrosis without affecting hepatic steatosis. Taken together, these results demonstrate that, by inhibiting JNK-1/2, A(2a)R stimulation reduces lipotoxicity and ameliorates NASH, giving a rationale to investigate A(2a)R agonists as possible new therapeutic agents in preventing fatty liver progression to NASH.


Asunto(s)
Agonistas del Receptor de Adenosina A2/uso terapéutico , Adenosina/análogos & derivados , Hígado Graso/prevención & control , Fenetilaminas/uso terapéutico , Adenosina/farmacología , Adenosina/uso terapéutico , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Células Cultivadas , Esquema de Medicación , Hígado Graso/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Inyecciones Intraperitoneales , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Enfermedad del Hígado Graso no Alcohólico , Fenetilaminas/farmacología , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Adenosina A2/metabolismo , Ácidos Esteáricos/toxicidad
20.
Clin Sci (Lond) ; 122(11): 545-53, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22142284

RESUMEN

In humans, there is large inter-individual variability in the evolution of NAFLD (non-alcoholic fatty liver disease) to NASH (non-alcoholic steatohepatitis). To investigate this issue, NASH was induced with an MCD (methionine-choline-deficient) diet in C57BL/6 and Balb/c mice that are characterized by different biases in Th1/Th2 and macrophage (M1/M2) responses. Following 4 weeks on the MCD diet, steatosis and lobular inflammation were prevalent in C57BL/6 (Th1, M1 oriented) than in Balb/c (Th2, M2 oriented) mice. Consistently, hepatic TNFα (tumour necrosis factor α) mRNA expression and circulating TNFα levels were higher in MCD-fed C57BL/6 than in MCD-fed Balb/c mice. The Th1/Th2 bias did not account for the increased NASH severity, as in both strains MCD feeding did not significantly modify the liver mRNA expression of the Th1 markers IFNγ (interferon γ) and T-bet or that of the Th2 markers IL-4 (interleukin 4) and GATA-3. Conversely, MCD-fed C57BL/6 mice displayed higher liver mRNAs for the macrophage M1 activation markers iNOS (inducible NO synthase), IL-12p40 and CXCL10 (CXC chemokine ligand 10) than similarly treated Balb/c mice, without effects on the M2 polarization markers IL-10 and MGL-1 (macrophage galactose-type C-type lectin-1). Circulating IL-12 was also higher in MCD-fed C57BL/6 than in MCD-fed Balb/c mice. The analysis of macrophages isolated from the livers of MCD-fed animals confirmed an enhanced expression of M1 markers in C57BL/6 mice. Among all of the MCD-treated mice, liver iNOS, IL-12p40 and CXCL10 mRNA levels positively correlated with the frequency of hepatic necro-inflammatory foci. We concluded that the macrophage M1 bias in C57BL/6 mice may account for the increased severity of NASH in this strain, suggesting macrophage responses as important contributors to NAFLD progression.


Asunto(s)
Hígado Graso/inmunología , Activación de Macrófagos , Animales , Susceptibilidad a Enfermedades , Hígado/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Balance Th1 - Th2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA