Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 18(11): e1010496, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36346812

RESUMEN

Bone and muscle are coupled through developmental, mechanical, paracrine, and autocrine signals. Genetic variants at the CPED1-WNT16 locus are dually associated with bone- and muscle-related traits. While Wnt16 is necessary for bone mass and strength, this fails to explain pleiotropy at this locus. Here, we show wnt16 is required for spine and muscle morphogenesis in zebrafish. In embryos, wnt16 is expressed in dermomyotome and developing notochord, and contributes to larval myotome morphology and notochord elongation. Later, wnt16 is expressed at the ventral midline of the notochord sheath, and contributes to spine mineralization and osteoblast recruitment. Morphological changes in wnt16 mutant larvae are mirrored in adults, indicating that wnt16 impacts bone and muscle morphology throughout the lifespan. Finally, we show that wnt16 is a gene of major effect on lean mass at the CPED1-WNT16 locus. Our findings indicate that Wnt16 is secreted in structures adjacent to developing bone (notochord) and muscle (dermomyotome) where it affects the morphogenesis of each tissue, thereby rendering wnt16 expression into dual effects on bone and muscle morphology. This work expands our understanding of wnt16 in musculoskeletal development and supports the potential for variants to act through WNT16 to influence bone and muscle via parallel morphogenetic processes.


Asunto(s)
Notocorda , Pez Cebra , Animales , Pez Cebra/genética , Columna Vertebral , Músculos , Morfogénesis/genética , Larva , Proteínas de Pez Cebra/genética , Proteínas Wnt/genética
2.
bioRxiv ; 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39463962

RESUMEN

Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species. Here we investigate the function of Shh signaling in patterning the D/V axis during spinal cord regeneration in Xenopus tropicalis tadpoles. We find that neural progenitor markers Msx1/2, Nkx6.1, and Nkx2.2 are confined to dorsal, intermediate and ventral spatial domains, respectively, in both the uninjured and regenerating spinal cord. These domains are altered by perturbation of Shh signaling. Additionally, we find that these D/V domains are more sensitive to Shh perturbation during regeneration than uninjured tissue. The renewed sensitivity of these neural progenitor cells to Shh signals represents a regeneration specific response and raises questions about how responsiveness to developmental patterning cues is regulated in mature and regenerating tissues.

3.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37745341

RESUMEN

Sensory cells often adopt specific morphologies that aid in the detection of external stimuli. Merkel cells encode gentle touch stimuli in vertebrate skin and adopt a reproducible shape characterized by spiky, actin-rich microvilli that emanate from the cell surface. The mechanism by which Merkel cells acquire this stereotyped morphology from basal keratinocyte progenitors is unknown. Here, we establish that dendritic Merkel cells (dMCs) express atonal homolog 1a (atoh1a), extend dynamic filopodial processes, and arise in transient waves during zebrafish skin development and regeneration. We find that dMCs share molecular similarities with both basal keratinocytes and Merkel cells, yet display mesenchymal-like behaviors, including local cell motility and proliferation within the epidermis. Furthermore, dMCs can directly adopt the mature, microvilliated Merkel cell morphology through substantial remodeling of the actin cytoskeleton. Loss of Ectodysplasin A signaling alters the morphology of dMCs and Merkel cells within specific skin regions. Our results show that dMCs represent an intermediate state in the Merkel cell maturation program and identify Ectodysplasin A signaling as a key regulator of Merkel cell morphology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA