Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 63, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262953

RESUMEN

Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.


Asunto(s)
Micorrizas , Antioxidantes , Zea mays , Carbón Orgánico , Ácido Edético , Clorofila A , Estrés Salino , Clorofila , Suelo
2.
Environ Res ; 257: 119328, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851369

RESUMEN

The growing effects of climate change on Malaysia's coastal ecology heighten worries about air pollution, specifically caused by urbanization and industrial activity in the maritime sector. Trucks and vessels are particularly noteworthy for their substantial contribution to gas emissions, including nitrogen dioxide (NO2), which is the primary gas released in port areas. The application of advanced analysis techniques was spurred by the air pollution resulting from the combustion of fossil fuels such as fuel oil, natural gas and gasoline in vessels. The study utilized satellite photos captured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite to evaluate the levels of NO2 gas pollution in Malaysia's port areas and exclusive economic zone. Before the COVID-19 pandemic, unrestricted gas emissions led to persistently high levels of NO2 in the analyzed areas. The temporary cessation of marine industry operations caused by the pandemic, along with the halting of vessels to prevent the spread of COVID-19, resulted in a noticeable decrease in NO2 gas pollution. In light of these favourable advancements, it is imperative to emphasize the need for continuous investigation and collaborative endeavours to further alleviate air contamination in Malaysian port regions, while simultaneously acknowledging the wider consequences of climate change on the coastal ecology. The study underscores the interdependence of air pollution, maritime activities and climate change. It emphasizes the need for comprehensive strategies that tackle both immediate environmental issues and the long-term sustainability and resilience of coastal ecosystems in the context of global climate challenges.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Cambio Climático , Monitoreo del Ambiente , Dióxido de Nitrógeno , Imágenes Satelitales , Malasia , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Navíos , COVID-19/epidemiología , Emisiones de Vehículos/análisis
3.
Environ Res ; 247: 118127, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220075

RESUMEN

Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.


Asunto(s)
Ecosistema , Ecotipo , Cambio Climático , Poaceae/química , Poaceae/metabolismo , Biomasa , Antioxidantes/metabolismo
4.
Environ Res ; 252(Pt 3): 118858, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38609066

RESUMEN

Crucial to the Earth's oceans, ocean currents dynamically react to various factors, including rotation, wind patterns, temperature fluctuations, alterations in salinity and the gravitational pull of the moon. Climate change impacts coastal ecosystems, emphasizing the need for understanding these currents. This study explores multibeam echosounder (MBES), specifically R2-Sonic 2020 instrument, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data viz. Bathymetry and backscatter were classified and acoustic doppler current profiler (ADCP) ground data were validated using random forest regression. Results indicated high precision in currents speed measurement i.e. coral reefs with 0.96, artificial reefs with 0.94 and rocky reefs with 0.97. Currents direction accuracy was notable in coral reefs with 0.85, slightly lower in rocky reefs with 0.72 and artificial reefs with 0.60. Random forest identified sediment and backscatter as key for speed prediction while direction relies on bathymetry, slope and aspect. The study emphasizes integrating sediment size, backscatter, bathymetry and ADCP data for seafloor current analysis. This multibeam data on sediments and currents support better marine spatial planning and determine biodiversity patterns planning in the reef area.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Movimientos del Agua , Monitoreo del Ambiente/métodos , Acústica , Efecto Doppler
5.
Appl Microbiol Biotechnol ; 108(1): 150, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240838

RESUMEN

The evolution and rapid spread of multidrug-resistant (MDR) bacterial pathogens have become a major concern for human health and demand the development of alternative antimicrobial agents to combat this emergent threat. Conventional intracellular methods for producing metal nanoparticles (NPs) using whole-cell microorganisms have limitations, including binding of NPs to cellular components, potential product loss, and environmental contamination. In contrast, this study introduces a green, extracellular, and sustainable methodology for the bio-materialization of silver NPs (AgNPs) using renewable resource cell-free yeast extract. These extracts serve as a sustainable, biogenic route for both reducing the metal precursor and stabilizing the surface of AgNPs. This method offers several advantages such as cost-effectiveness, environment-friendliness, ease of synthesis, and scalability. HR-TEM imaging of the biosynthesized AgNPs revealed an isotropic growth route, resulting in an average size of about ~ 18 nm and shapes ranging from spherical to oval. Further characterization by FTIR and XPS results revealed various functional groups, including carboxyl, hydroxyl, and amide contribute to enhanced colloidal stability. AgNPs exhibited potent antibacterial activity against tested MDR strains, showing particularly high efficacy against Gram-negative bacteria. These findings suggest their potential role in developing alternative treatments to address the growing threat of antimicrobial resistance. Additionally, seed priming experiments demonstrated that pre-sowing treatment with AgNPs improves both the germination rate and survival of Sorghum jowar and Zea mays seedlings. KEY POINTS: •Yeast extract enables efficient, cost-effective, and eco-friendly AgNP synthesis. •Biosynthesized AgNPs showed strong antibacterial activity against MDR bacteria. •AgNPs boost seed germination and protect against seed-borne diseases.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Semillas , Plata/farmacología , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
6.
Mol Divers ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145880

RESUMEN

Eighteen compounds derived from two sub-series, (HC1-HC9) and (HF1-HF9), were synthesized and evaluated for their inhibitory activities against monoamine oxidase (MAO). HC (chalcone) series showed higher inhibitory activity against MAO-B than against MAO-A, whereas the HF (chromone) series showed reversed inhibitory activity. Compound HC4 most potently inhibited MAO-B with an IC50 value of 0.040 µM, followed by HC3 (IC50 = 0.049 µM), while compound HF4 most potently inhibited MAO-A (IC50 = 0.046 µM), followed by HF2 (IC50 = 0.075 µM). The selectivity index (SI) values of HC4 and HF4 were 50.40 and 0.59, respectively. Structurally, HC4 (4-OC2H5 in B-ring) showed higher MAO-B inhibition than other derivatives, suggesting that the -OC2H5 substitution of the 4-position in the B-ring contributes to the increase of MAO-B inhibition, especially -OC2H5 (HC4) > -OCH3 (HC3) > -F (HC7) > -CH3 (HC2) > -Br (HC8) > -H (HC1) in order. In MAO-A inhibition, the substituent 4-OC2H5 in the B-ring of HF4 contributed to an increase in inhibitory activity, followed by -CH3 (HF2), -F (HF7), -Br (HF8), -OCH3 (HF3), and-H (HF1). In the enzyme kinetics and reversibility study, the Ki value of HC4 for MAO-B was 0.035 ± 0.005 µM, and that of HF4 for MAO-A was 0.035 ± 0.005 µM, and both were reversible competitive inhibitors. We confirmed that HC4 and HF4 significantly ameliorated rotenone-induced neurotoxicity, as evidenced by the reactive oxygen species and superoxide dismutase assays. This study also supports the significant effect of HC4 and HF4 on mitochondrial membrane potential in rotenone-induced toxicity. A lead molecule was used for molecular docking and dynamic simulation studies. These results show that HC4 is a potent selective MAO-B inhibitor and HF4 is a potent MAO-A inhibitor, suggesting that both compounds can be used as treatment agents for neurological disorders.

7.
J Chem Phys ; 160(24)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38912625

RESUMEN

In this work, pure and S-N/WO3 (1%-7%) nanoparticles (NPs) have been developed for the degradation of MB dye. Optical properties, vibrational analysis, morphology, structural analysis, and photocatalytic activity of the samples have been evaluated using a variety of characterization techniques, including UV-vis, PL, FTIR, SEM, and x-ray diffraction (XRD). The XRD patterns showed that the stability of the orthorhombic phase of WO3 was affected by the concentrations of S and N. In SEM, nanospheres with an average size of 80 nm of NPs have been observed. The PL results showed that the e-, h+ recombination rate for the S-N7%/WO3 sample was the lowest. The degradation of MB dye has also been investigated in order to investigate the photocatalytic performance. Remarkably, S-N7%/WO3 shows the best results, with a maximum degradation of 90% in 120 min. The stability of the improved catalyst was tested using recycling and trapping studies. S-N7%/WO3 catalyst's exceptional photocatalytic activity highlights its potential use in wastewater treatment. This study will be helpful for manufacturing innovation.

8.
Luminescence ; 39(9): e4884, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39258707

RESUMEN

In present work, synthesis of a nanohybrid material using Fe and MoS2 has been performed via a cost-effective and environmentally friendly route for sustainable manufacturing innovation. Rice straw extract was prepared and used as a reducing and chelating agent to synthesize the nanohybrid material by mixing it with molybdenum disulfide (MoS2) and ferric nitrate [Fe (NO3)3.9H2O], followed by heating and calcination. The X-ray diffraction (XRD) pattern confirms the formation of a nanohybrid consisting of monoclinic Fe2(MoO4)3, cubic Fe2.957O4, and orthorhombic FeS with 86% consisting of Fe2(MoO4)3. The properties were analyzed through Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results of the dynamic light scattering (DLS) study revealed a heterogeneous size distribution, with an average particle size of 48.42 nm for 18% of particles and 384.54 nm for 82% of particles. Additionally, the zeta potential was measured to be -18.88 mV, suggesting moderate stability. X-ray photoelectron spectroscopy (XPS) results confirmed the presence of both Fe2+ and Fe3+ oxidation states along with the presence of Molybdenum (Mo), oxygen (O), and Sulphur (S). The prepared nanohybrid material exhibited a band gap of 2.95 eV, and the photoluminescence intensity increased almost twice that of bare MoS2. The present work holds potential applications in photo luminescent nanoplatform for biomedical applications.


Asunto(s)
Disulfuros , Tecnología Química Verde , Molibdeno , Oryza , Tamaño de la Partícula , Molibdeno/química , Disulfuros/química , Oryza/química , Hierro/química , Propiedades de Superficie
9.
Luminescence ; 39(8): e4844, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39103209

RESUMEN

This study presents a novel approach for the fabrication of a Co,Ni/MoS2-derived nanohybrid material using wheat straw extract. The facile synthesis method involves a sol-gel process, followed by calcination, showcasing the potential of agricultural waste as a sustainable reducing and chelating reagent. The as-prepared nanohybrid has been characterized using different techniques to analyse its physicochemical properties. X-ray diffraction analysis confirmed the successful synthesis of the nanohybrid material, identifying the presence of NiMoO4, CoSO4 and Mo17O47 as its components. Fourier-transform infrared spectroscopy differentiated the functional groups present in the wheat straw biomass and those in the nanohybrid material, highlighting the formation of metal-oxide and sulphide bonds. Scanning electron microscopy revealed a heterogeneous morphology with agglomerated structures and a grain size of around 70 nm in the nanohybrid. Energy-dispersive X-ray spectroscopy analysis shows the composition of elements with weight percentages of (Mo) 9.17%, (S) 6.21%, (Co) 12.48%, (Ni) 12.18% and (O) 50.46% contributing to its composition. Electrochemical analysis performed through cyclic voltammetry showcased the exceptional performance of the nanohybrid material as compared with MoS2, suggesting its possible applications for designing biosensors and related technologies. Thus, the research study presented herein underscores the efficient utilization of natural resources for the development of functional nanomaterials with promising applications in various fields. This study paves a way for manufacturing innovation along with advancement of novel synthesis method for sustainable nanomaterial for future technological developments.


Asunto(s)
Cobalto , Disulfuros , Molibdeno , Níquel , Triticum , Triticum/química , Molibdeno/química , Disulfuros/química , Níquel/química , Cobalto/química , Extractos Vegetales/química , Tamaño de la Partícula , Propiedades de Superficie
10.
Arch Pharm (Weinheim) ; 357(3): e2300604, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38148299

RESUMEN

In the past, efforts have been made to find a cure for diabetes, mainly evaluating new classes of compounds to explore their potency. In this study, we present the synthesis and evaluation of carbonylbis(hydrazine-1-carbothioamide) derivatives as potential α-glucosidase inhibitors, employing both in vivo and in silico investigations. The in vitro experiments revealed that all tested compounds were significantly potent for α-glucosidase inhibition, with the lead compound 3a displaying approximately 80 times higher activity than acarbose. To delve deeper, in silico induced fit docking, pharmacokinetics, and molecular dynamics studies were conducted. Significantly, compound 3a exhibited a docking score of -7.87 kcal/mol, surpassing acarbose, which had a docking score of -6.59 kcal/mol. The in silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development. Molecular dynamics analysis demonstrated that, when the ligand 3a was coupled with the target 3TOP, Cα-RMSD backbone RMSD values below 2.4 Å and "Lig_fit_Prot" values below 2.7 Å were observed. QSAR analysis demonstrates that the "fOC8A" descriptor positively correlates with α-glucosidase inhibition activity, while "lipoplus_AbSA" positively contributes and "notringC_notringO_8B" negatively contributes to this activity.


Asunto(s)
Acarbosa , Inhibidores de Glicósido Hidrolasas , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Relación Estructura-Actividad
11.
J Environ Manage ; 353: 120182, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38278112

RESUMEN

Randomly collected food waste results in inaccurate experimental data with poor reproducibility for composting. This study investigated standard food waste samples as replacements for randomly collected food waste. A response surface methodology was utilised to analyse data from a 28-day compost process optimisation experiment using collected food waste, and the optimal combination of composting parameters was derived. Experiments using different standard food waste samples (high oil and salt, high oil and sugar, balanced diet, and vegetarian) were conducted for 28 days under optimal conditions. The ranking of differences between the standard samples and collected food waste was vegetarian > balanced diet > high oil and sugar > high oil and salt. Statistical analysis indicated t-tests for increased oil and salt samples and collected food waste were not significant, and Cohen's d effect values were minimal. High oil and salt samples can be used as replacements for collected food waste in composting experiments.


Asunto(s)
Compostaje , Eliminación de Residuos , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado , Alimentos , Estudios de Factibilidad , Reproducibilidad de los Resultados , Suelo , Cloruro de Sodio , Azúcares
12.
Acta Vet Hung ; 72(2): 133-139, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900584

RESUMEN

This study investigated the sero-epidemiology of bluetongue in ruminants in North-Western Pakistan. A total of 3,173 serum samples were collected from small (n = 1,651) and large (n = 1,522) ruminants being reared by farmers in 14 districts. Antibodies to bluetongue virus (BTV) were detected using competitive ELISA. The overall prevalence of BTV antibodies was 65%. A significant association (P < 0.05) between the prevalence of BTV antibodies and the risk factors including sex, species, age, area, husbandry practices and breed was shown by univariate analysis. In multivariate analysis, the seroprevalence was 6.5 (95% CL = 3.7-11.4), 5.9 (95% CL = 3.8-9.4) and 2.4 (95% CL = 1.5-3.7) times higher in buffaloes, cattle and goats than sheep, respectively. The seroprevalence was 1.4 (95% CL = 1.1-1.7) times higher in local breeds than in cross/exotic breeds. The seroprevalence was 1.6 (95% CL = 1.1 to 2.3) times higher in sedentary animals than in nomadic animals. The seroprevalence was significantly associated with age. Further work is required to determine the BTV serotypes prevalent in the study area for effective control of the disease.


Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Enfermedades de las Cabras , Animales , Pakistán/epidemiología , Estudios Seroepidemiológicos , Lengua Azul/epidemiología , Lengua Azul/virología , Virus de la Lengua Azul/inmunología , Femenino , Masculino , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/virología , Ovinos , Cabras , Bovinos , Anticuerpos Antivirales/sangre , Rumiantes/virología , Factores de Riesgo , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Crianza de Animales Domésticos , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/virología , Prevalencia
13.
Saudi Pharm J ; 32(5): 102062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38601975

RESUMEN

This research describes the synthesis by an environmentally-friendly method, microwave irradiation, development and analysis of three novel and one previously identified Schiff base derivative as a potential inhibitor of bovine xanthine oxidase (BXO), a key enzyme implicated in the progression of gout. Meticulous experimentation revealed that these compounds (10, 9, 4, and 7) have noteworthy inhibitory effects on BXO, with IC50 values ranging from 149.56 µM to 263.60 µM, indicating their good efficacy compared to that of the standard control. The validation of these results was further enhanced through comprehensive in silico studies, which revealed the pivotal interactions between the inhibitors and the catalytic sites of BXO, with a particular emphasis on the imine group (-C = N-) functionalities. Intriguingly, the compounds exhibiting the highest inhibition rates also showcase advantageous ADMET profiles, alongside encouraging initial assessments via PASS, hinting at their broad-spectrum potential. The implications of these findings are profound, suggesting that these Schiff base derivatives not only offer a new vantage point for the inhibition of BXO but also hold considerable promise as innovative therapeutic agents in the management and treatment of gout, marking a significant leap forward in the quest for more effective gout interventions.

14.
J Fluoresc ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668770

RESUMEN

Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.

15.
Environ Res ; 216(Pt 3): 114741, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347394

RESUMEN

Nowadays, fast-growing industrialization has resulted in the release of enormous amounts of contaminants such as toxic dyes into water bodies and leading to cause health and environmental risks. In this regard, we prepared inorganic nanocomposites for the treatment of toxic dyes. Hence, we synthesized TiO2/PAni/GO nanocomposites and examined them by using XRD, SEM, TEM, UV-Vis spectroscopy, BET analysis, and a photoluminescence investigation. In addition, band gap energies of the nanocomposites were determined, and Total Organic Carbon (TOC) testing was used to determine dye degradation levels. The photocatalytic degradations of Thymol Blue and Rose Bengal dyes were investigated at different dye concentrations, illumination periods, solution pH values, and photocatalyst dosages. By using TiO2/PAni/GO, TiO2/PAni, and TiO2 at neutral pH, a photocatalyst dose of 1600 mg/L, and exposure to visible light, Thymol Blue and Rose Bengal were photodegraded 85-99%, 60-97%, and 10-20%, respectively, at a concentration of 25 ppm (180 min). Reductions in the TOCs confirmed their photodegradation, and a kinetic study revealed photodegradation followed first-order kinetics. This study shows the coating of polyaniline (PAni) and graphene oxide (GO) on TiO2 improved its ability to photodegrade Thymol Blue and Rose Bengal dye.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Fotólisis , Colorantes , Rosa Bengala , Contaminantes Químicos del Agua/análisis , Nanocompuestos/química , Luz
16.
Curr Microbiol ; 80(9): 304, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37493820

RESUMEN

Rhizoctonia solani causes root rot in soybean, a worldwide severe concern for soybean cultivation. The fungus grows and clogs the xylem tissue of the host plant by producing numerous sclerotia, which results in disease symptoms, such as yellowing of leaves, wilt, and plant death. Overuse of chemical fungicides increases the threat of developing resistance to pathogens, reduces soil productivity, and negatively impacts the health of the soil, the environment, and humans. An integrated pest management strategy improves crop yield, profit, and safety. The present study focused on a fungicide (carbendazim) compatibility test with a biocontrol agent (Pseudomonas fluorescence). It evaluated the effect of this combined approach on photosynthetic reactions and growth in soybean in the presence of the fungal pathogen R. solani. The study showed that P. fluorescence significantly inhibited the mycelial growth of R. solani (43%) and tolerated 0.05-0.15% concentration of carbendazim. This confirms the suitability compatibility of P. fluorescence with chemical fungicides for IPM. These novel blending significantly reduced the disease incidence by about 75%, and a 72% decrease in disease severity was observed compared to pathogen control. Moreover, this combined approach has also improved plant growth, yield parameters, and photosynthetic efficiency in the presence of R. solani treated with an integrated system showed better overall growth despite being infected by the pathogen.


Asunto(s)
Fungicidas Industriales , Humanos , Fungicidas Industriales/farmacología , Glycine max , Bencimidazoles/farmacología , Rhizoctonia , Plantas , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
17.
Arch Pharm (Weinheim) ; 356(11): e2300430, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37718357

RESUMEN

Alzheimer's disease (AD) presents a multifactorial neurological disorder with multiple enzyme involvement in its onset. Conventional monotherapies fall short in providing long-term relief, necessitating the exploration of alternative multitargeting approaches to address the complexity of AD. Therefore, the design, synthesis, and in vitro and in silico evaluation of 2-oxoquinoline-based thiosemicarbazones 9a-r as multipotent analogs, able to simultaneously inhibit the cholinesterase (ChE) and monoamine oxidase (MAO) enzymes for the potential treatment of AD, are reported. In the in vitro experimental evaluation of MAO and ChE inhibition, all tested compounds demonstrated remarkable potency exhibiting nonselective inhibition of both MAO-A and MAO-B, and selective inhibition of acetylcholinesterase (AChE) over butyrylcholinesterase (BChE), with 9d, 9j, and 9m evolving as lead compounds for MAO-A, MAO-B, and AChE, displaying IC50 values of 0.35 ± 0.92, 0.50 ± 0.02, and 0.25 ± 0.13 µM, respectively. Moreover, the kinetic studies revealed that all tested compounds inhibited all three enzymes through a competitive mode of inhibition. Furthermore, the molecular docking studies of the most active compounds revealed several crucial interactions, particularly hydrogen bonding interactions. These interactions were observed between the nitrogen and sulfur atoms of thiosemicarbazone and the nitrogen and oxygen atoms of the quinoline ring with various amino acids, suggesting the strong interactions of these compounds with the enzymes.


Asunto(s)
Enfermedad de Alzheimer , Quinolonas , Tiosemicarbazonas , Humanos , Inhibidores de la Colinesterasa/química , Monoaminooxidasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Simulación del Acoplamiento Molecular , Tiosemicarbazonas/farmacología , Cinética , Relación Estructura-Actividad , Nitrógeno
18.
J Environ Manage ; 326(Pt A): 116615, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395641

RESUMEN

Novel ZnS-Cu7S4 nanohybrid supported on chitosan matrix, as an ideal photocatalyst, was fabricated by the sonochemical method wherein high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRD) analysis confirmed the co-existence of both ZnS and Cu7S4; presence of vacancy sites in ZnS was verified by electron paramagnetic resonance (EPR) analysis and their introduction could promote two-photon excitation facilitated visible light response and charge transport/separation. The type II interface is formed in the ZnS-Cu7S4/Chitosan heterojunction owing to interstitial states that promote charge separation. The ZnS-Cu7S4/Chitosan was used for the photodegradation of a pharmaceutical pollutant, p-chlorophenol (PCP); over 98.8% of PCP photodegradation was achieved under visible-light irradiation where the ensued ·O2- and ·OH serve a key role in the photodegradation of PCP. In vitro cytotoxicity studies substantiated that the ZnS-Cu7S4/Chitosan is nontoxic to the ecosystem and human beings and endowed with promising photodegradation properties and accessibility via an environmentally friendly design, bodes well for its potential remediation applications.


Asunto(s)
Quitosano , Humanos , Fotólisis , Ecosistema
19.
Biochemistry ; 61(20): 2188-2197, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36166360

RESUMEN

The receptor binding domain(s) (RBD) of spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 (severe acute respiratory syndrome coronavirus) undergoes closed to open transition to engage with host ACE2 receptors. In this study, using multi atomistic (equilibrium) and targeted (non-equilibrium) molecular dynamics simulations, we have compared energetics of RBD opening pathways in full-length (modeled from cryo-EM structures) S proteins of SARS-CoV-1 and SARS-CoV-2. Our data indicate that amino acid variations at the RBD interaction interface can culminate into distinct free energy landscapes of RBD opening in these S proteins. We further report that mutations in the S protein of SARS-CoV-2 variants of concern can reduce the protein-protein interaction affinity of RBD(s) with its neighboring domains and could favor its opening to access ACE2 receptors. The findings can also aid in predicting the impact of future mutations on the rate of S protein opening for rapid host receptor scanning.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Aminoácidos/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Sitios de Unión , COVID-19/genética , Mutación , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
20.
Gastroenterology ; 160(6): 2055-2071.e0, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33524399

RESUMEN

BACKGROUND & AIMS: Environmental enteric dysfunction (EED) limits the Sustainable Development Goals of improved childhood growth and survival. We applied mucosal genomics to advance our understanding of EED. METHODS: The Study of Environmental Enteropathy and Malnutrition (SEEM) followed 416 children from birth to 24 months in a rural district in Pakistan. Biomarkers were measured at 9 months and tested for association with growth at 24 months. The duodenal methylome and transcriptome were determined in 52 undernourished SEEM participants and 42 North American controls and patients with celiac disease. RESULTS: After accounting for growth at study entry, circulating insulin-like growth factor-1 (IGF-1) and ferritin predicted linear growth, whereas leptin correlated with future weight gain. The EED transcriptome exhibited suppression of antioxidant, detoxification, and lipid metabolism genes, and induction of anti-microbial response, interferon, and lymphocyte activation genes. Relative to celiac disease, suppression of antioxidant and detoxification genes and induction of antimicrobial response genes were EED-specific. At the epigenetic level, EED showed hyper-methylation of epithelial metabolism and barrier function genes, and hypo-methylation of immune response and cell proliferation genes. Duodenal coexpression modules showed association between lymphocyte proliferation and epithelial metabolic genes and histologic severity, fecal energy loss, and wasting (weight-for-length/height Z < -2.0). Leptin was associated with expression of epithelial carbohydrate metabolism and stem cell renewal genes. Immune response genes were attenuated by giardia colonization. CONCLUSIONS: Children with reduced circulating IGF-1 are more likely to experience stunting. Leptin and a gene signature for lymphocyte activation and dysregulated lipid metabolism are implicated in wasting, suggesting new approaches for EED refractory to nutritional intervention. ClinicalTrials.gov, Number: NCT03588013. (https://clinicaltrials.gov/ct2/show/NCT03588013).


Asunto(s)
Enfermedades Intestinales/genética , Mucosa Intestinal/inmunología , Metabolismo de los Lípidos/genética , Activación de Linfocitos/genética , Desnutrición/complicaciones , Biomarcadores/sangre , Biomarcadores/orina , Estudios de Casos y Controles , Enfermedad Celíaca/genética , Enfermedad Celíaca/patología , Enfermedad Celíaca/fisiopatología , Proliferación Celular/genética , Desarrollo Infantil , Preescolar , Creatinina/orina , Metilación de ADN , Epigenoma , Femenino , Ferritinas/sangre , Genómica , Trastornos del Crecimiento/etiología , Humanos , Lactante , Recién Nacido , Factor I del Crecimiento Similar a la Insulina/metabolismo , Enfermedades Intestinales/complicaciones , Enfermedades Intestinales/patología , Enfermedades Intestinales/fisiopatología , Leptina/sangre , Linfocitos/fisiología , Masculino , Estrés Oxidativo/genética , Pakistán , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA