Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Semin Cancer Biol ; 83: 77-87, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33486076

RESUMEN

Despite the advances in treatment using chemotherapy or targeted therapies, due to static survival rates, non-small cell lung cancer (NSCLC) is the major cause of cancer-related deaths worldwide. Epigenetic-based therapies have been developed for NSCLC by targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. However, treatment using single epigenetic agents on solid tumours has been inadequate; whereas, treatment with a combination of DNMTs inhibitors with chemotherapy and immunotherapy has shown great promise. Dietary sources of phytochemicals could also inhibit DNMTs and cancer stem cells, representing a novel and promising way to prevent and treat cancer. Herein, we will discuss the different DNMTs, DNA methylation profiling in NSCLC as well as current demethylating agents in ongoing clinical trials. Therefore, providing a concise overview of future developments in the field of epigenetic therapy in NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN , Metilación de ADN , Metilasas de Modificación del ADN/genética , Epigénesis Genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
2.
Genomics ; 113(6): 3476-3486, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34391867

RESUMEN

How stable and temperature-dependent variations in DNA methylation and nucleosome occupancy influence alternative splicing (AS) remains poorly understood in plants. To answer this, we generated transcriptome, whole-genome bisulfite, and MNase sequencing data for an epigenetic Recombinant Inbred Line (epiRIL) of A. thaliana at normal and cold temperature. For comparative analysis, the same data sets for the parental ecotype Columbia (Col-0) were also generated, whereas for DNA methylation, previously published high confidence methylation profiles of Col-0 were used. Significant epigenetic differences in an identical genetic background were observed between Col-0 and epiRIL lines under normal and cold temperatures. Our transcriptome data revealed that differential DNA methylation and nucleosome occupancy modulate expression levels of many genes and AS in response to cold. Collectively, DNA methylation and nucleosome levels exhibit characteristic patterns around intron-exon boundaries at normal and cold conditions, and any perturbation in them, in an identical genetic background is sufficient to modulate AS in Arabidopsis.


Asunto(s)
Arabidopsis , Empalme Alternativo , Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Antecedentes Genéticos
3.
New Phytol ; 229(4): 1937-1945, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33135169

RESUMEN

Alternative splicing (AS) is a major gene regulatory mechanism in plants. Recent evidence supports co-transcriptional splicing in plants, hence the chromatin state can impact AS. However, how dynamic changes in the chromatin state such as nucleosome occupancy influence the cold-induced AS remains poorly understood. Here, we generated transcriptome (RNA-Seq) and nucleosome positioning (MNase-Seq) data for Arabidopsis thaliana to understand how nucleosome positioning modulates cold-induced AS. Our results show that characteristic nucleosome occupancy levels are strongly associated with the type and abundance of various AS events under normal and cold temperature conditions in Arabidopsis. Intriguingly, exitrons, alternatively spliced internal regions of protein-coding exons, exhibit distinctive nucleosome positioning pattern compared to other alternatively spliced regions. Likewise, nucleosome patterns differ between exitrons and retained introns, pointing to their distinct regulation. Collectively, our data show that characteristic changes in nucleosome positioning modulate AS in plants in response to cold.


Asunto(s)
Arabidopsis , Empalme Alternativo/genética , Arabidopsis/genética , Cromatina , Intrones , Nucleosomas
4.
Nucleic Acids Res ; 47(6): 2716-2726, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30793202

RESUMEN

Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS.


Asunto(s)
Empalme Alternativo/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Animales , Arabidopsis/genética , Metilación de ADN/genética , Epigénesis Genética/fisiología , Redes Reguladoras de Genes/genética , Humanos , Transcripción Genética/genética
5.
Biochem Soc Trans ; 48(6): 2399-2414, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33196096

RESUMEN

Next-generation sequencing (NGS) technologies - Illumina RNA-seq, Pacific Biosciences isoform sequencing (PacBio Iso-seq), and Oxford Nanopore direct RNA sequencing (DRS) - have revealed the complexity of plant transcriptomes and their regulation at the co-/post-transcriptional level. Global analysis of mature mRNAs, transcripts from nuclear run-on assays, and nascent chromatin-bound mRNAs using short as well as full-length and single-molecule DRS reads have uncovered potential roles of different forms of RNA polymerase II during the transcription process, and the extent of co-transcriptional pre-mRNA splicing and polyadenylation. These tools have also allowed mapping of transcriptome-wide start sites in cap-containing RNAs, poly(A) site choice, poly(A) tail length, and RNA base modifications. The emerging theme from recent studies is that reprogramming of gene expression in response to developmental cues and stresses at the co-/post-transcriptional level likely plays a crucial role in eliciting appropriate responses for optimal growth and plant survival under adverse conditions. Although the mechanisms by which developmental cues and different stresses regulate co-/post-transcriptional splicing are largely unknown, a few recent studies indicate that the external cues target spliceosomal and splicing regulatory proteins to modulate alternative splicing. In this review, we provide an overview of recent discoveries on the dynamics and complexities of plant transcriptomes, mechanistic insights into splicing regulation, and discuss critical gaps in co-/post-transcriptional research that need to be addressed using diverse genomic and biochemical approaches.


Asunto(s)
Proteínas de Plantas/metabolismo , Transcriptoma , Empalme Alternativo , Arabidopsis/genética , Secuencia de Bases , Cromatina/química , Cromatina/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Isoformas de Proteínas , Procesamiento Postranscripcional del ARN , Empalme del ARN , RNA-Seq , Análisis de Secuencia de ARN
6.
J Exp Bot ; 66(22): 7129-49, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26314767

RESUMEN

Circadian clocks are a great evolutionary innovation and provide competitive advantage during the day/night cycle and under changing environmental conditions. The circadian clock mediates expression of a large proportion of genes in plants, achieving a harmonious relationship between energy metabolism, photosynthesis, and biotic and abiotic stress responses. Here it is shown that multiple paralogues of clock genes are present in soybean (Glycine max) and mediate flooding and drought responses. Differential expression of many clock and SUB1 genes was found under flooding and drought conditions. Furthermore, natural variation in the amplitude and phase shifts in PRR7 and TOC1 genes was also discovered under drought and flooding conditions, respectively. PRR3 exhibited flooding- and drought-specific splicing patterns and may work in concert with PRR7 and TOC1 to achieve energy homeostasis under flooding and drought conditions. Higher expression of TOC1 also coincides with elevated levels of abscisic acid (ABA) and variation in glucose levels in the morning and afternoon, indicating that this response to abiotic stress is mediated by ABA, endogenous sugar levels, and the circadian clock to fine-tune photosynthesis and energy utilization under stress conditions. It is proposed that the presence of multiple clock gene paralogues with variation in DNA sequence, phase, and period could be used to screen exotic germplasm to find sources for drought and flooding tolerance. Furthermore, fine tuning of multiple clock gene paralogues (via a genetic engineering approach) should also facilitate the development of flooding- and drought-tolerant soybean varieties.


Asunto(s)
Empalme Alternativo , Relojes Biológicos/genética , Genes de Plantas , Glycine max/genética , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Ciclopentanos/metabolismo , Sequías , Inundaciones , Datos de Secuencia Molecular , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Alineación de Secuencia , Factores de Transcripción/metabolismo
7.
Nucleic Acids Res ; 40(6): 2454-69, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22127866

RESUMEN

Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT-PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5' or 3'UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3'-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes.


Asunto(s)
Empalme Alternativo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes Reguladores , Degradación de ARNm Mediada por Codón sin Sentido , Regiones no Traducidas 3' , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Codón Iniciador , Codón sin Sentido , Cicloheximida/farmacología , Genes de Plantas , Intrones , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Helicasas/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Trends Plant Sci ; 24(6): 496-506, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30852095

RESUMEN

Alternative splicing (AS) generates multiple transcripts from the same gene, however, AS contribution to proteome complexity remains elusive in plants. AS is prevalent under stress conditions in plants, but it is counterintuitive why plants would invest in protein synthesis under declining energy supply. We propose that plants employ AS not only to potentially increasing proteomic complexity, but also to buffer against the stress-responsive transcriptome to reduce the metabolic cost of translating all AS transcripts. To maximise efficiency under stress, plants may make fewer proteins with disordered domains via AS to diversify substrate specificity and maintain sufficient regulatory capacity. Furthermore, we suggest that chromatin state-dependent AS engenders short/long-term stress memory to mediate reproducible transcriptional response in the future.


Asunto(s)
Empalme Alternativo , Proteoma , Regulación de la Expresión Génica de las Plantas , Proteómica , Estrés Fisiológico
9.
Front Plant Sci ; 10: 1160, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632417

RESUMEN

Alternative splicing (AS) of pre-mRNAs contributes to transcriptome diversity and enables plants to generate different protein isoforms from a single gene and/or fine-tune gene expression during different development stages and environmental changes. Although AS is pervasive, the genetic basis for differential isoform usage in plants is still emerging. In this study, we performed genome-wide analysis in 666 geographically distributed diverse ecotypes of Arabidopsis thaliana to identify genomic regions [splicing quantitative trait loci (sQTLs)] that may regulate differential AS. These ecotypes belong to different microclimatic conditions and are part of the relict and non-relict populations. Although sQTLs were spread across the genome, we observed enrichment for trans-sQTL (trans-sQTLs hotspots) on chromosome one. Furthermore, we identified several sQTL (911) that co-localized with trait-linked single nucleotide polymorphisms (SNP) identified in the Arabidopsis genome-wide association studies (AraGWAS). Many sQTLs were enriched among circadian clock, flowering, and stress-responsive genes, suggesting a role for differential isoform usage in regulating these important processes in diverse ecotypes of Arabidopsis. In conclusion, the current study provides a deep insight into SNPs affecting isoform ratios/genes and facilitates a better mechanistic understanding of trait-associated SNPs in GWAS studies. To the best of our knowledge, this is the first report of sQTL analysis in a large set of Arabidopsis ecotypes and can be used as a reference to perform sQTL analysis in the Brassicaceae family. Since whole genome and transcriptome datasets are available for these diverse ecotypes, it could serve as a powerful resource for the biological interpretation of trait-associated loci, splice isoform ratios, and their phenotypic consequences to help produce more resilient and high yield crop varieties.

10.
Front Plant Sci ; 10: 708, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244866

RESUMEN

Plants, unlike animals, exhibit a very high degree of plasticity in their growth and development and employ diverse strategies to cope with the variations during diurnal cycles and stressful conditions. Plants and animals, despite their remarkable morphological and physiological differences, share many basic cellular processes and regulatory mechanisms. Alternative splicing (AS) is one such gene regulatory mechanism that modulates gene expression in multiple ways. It is now well established that AS is prevalent in all multicellular eukaryotes including plants and humans. Emerging evidence indicates that in plants, as in animals, transcription and splicing are coupled. Here, we reviewed recent evidence in support of co-transcriptional splicing in plants and highlighted similarities and differences between plants and humans. An unsettled question in the field of AS is the extent to which splice isoforms contribute to protein diversity. To take a critical look at this question, we presented a comprehensive summary of the current status of research in this area in both plants and humans, discussed limitations with the currently used approaches and suggested improvements to current methods and alternative approaches. We end with a discussion on the potential role of epigenetic modifications and chromatin state in splicing memory in plants primed with stresses.

11.
Trends Plant Sci ; 17(10): 616-23, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22743067

RESUMEN

More than 60% of intron-containing genes undergo alternative splicing (AS) in plants. This number will increase when AS in different tissues, developmental stages, and environmental conditions are explored. Although the functional impact of AS on protein complexity is still understudied in plants, recent examples demonstrate its importance in regulating plant processes. AS also regulates transcript levels and the link with nonsense-mediated decay and generation of unproductive mRNAs illustrate the need for both transcriptional and AS data in gene expression analyses. AS has influenced the evolution of the complex networks of regulation of gene expression and variation in AS contributed to adaptation of plants to their environment and therefore will impact strategies for improving plant and crop phenotypes.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Relojes Circadianos , Epigénesis Genética , Evolución Molecular , Genes de Plantas , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Poliploidía , Estabilidad Proteica , ARN Mensajero/genética , ARN de Planta/genética , Transcripción Genética
12.
Evol Appl ; 4(5): 648-59, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25568012

RESUMEN

Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.

13.
Nat Protoc ; 1(6): 2746-52, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17406531

RESUMEN

Multiple copies of transposable elements, inserted at random around the host genome, can be used as molecular markers. Sequence-specific amplification polymorphisms (SSAPs) amplify the region between a PCR primer site near the end of an element and an adjacent restriction site in the flanking genomic DNA. Each amplified insertion is revealed as a band on a sequencing gel or capillary electrophoresis, and a genomic DNA sample produces a characteristic fingerprint of bands. Here, we explain the SSAP marker development method, which can be performed for any species, with recommendations for experimental parameters in several plant species. It takes about 1-2 weeks to complete the whole SSAP marker procedure.


Asunto(s)
Elementos Transponibles de ADN , Técnicas de Amplificación de Ácido Nucleico , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Longitud del Fragmento de Restricción
14.
Mol Genet Genomics ; 275(6): 553-63, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16468023

RESUMEN

Transposable elements are ubiquitous genomic parasites with an ancient history of coexistence with their hosts. A few cases have emerged recently where these genetic elements have been recruited for normal function in the host organism. We have identified an expressed hobo/Ac/Tam (hAT) family transposase-like gene in cereal grasses which appears to represent such a case. This gene, which we have called gary, is found in one or two copies in barley, two diverged copies in rice and two very similar copies in hexaploid wheat. No gary homologues are found in Arabidopsis. In all three cereal species, an apparently complete 2.5 kb transposase-like open reading frame is present and nucleotide substitution data show evidence for positive selection, yet the predicted gary protein is probably not an active transposase, as judged by the absence of key amino acids required for transposase function. Gary is expressed in wheat and barley spikes and gary cDNA sequences are also found in rice, oat, rye, maize, sorghum and sugarcane. The short inverted terminal repeats, flanked by an eight-nucleotide host sequence duplication, which are characteristic of a hAT transposon are absent. Genetic mapping in barley shows that gary is located on the distal end of the long arm of chromosome 2H. Wheat homologues of gary map to the same approximate location on the wheat group 2 chromosomes by physical bin-mapping and the more closely related of the two rice garys maps to the syntenic location near the bottom of rice chromosome 4. These data suggest that gary has resided in a single genomic location for at least 60 Myr and has lost the ability to transpose, yet expresses a transposase-related protein that is being conserved under host selection. We propose that the gary transposase-like gene has been recruited by the cereal grasses for an unknown function.


Asunto(s)
Genoma de Planta , Poaceae/genética , Transposasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , ADN de Plantas/genética , Hordeum/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Transposasas/química
15.
Theor Appl Genet ; 112(3): 517-27, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16341837

RESUMEN

Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187 retrotransposon-specific SSAP markers, 29 NBS-LRR markers and 242 AFLP markers were mapped in an F(2) population, derived from an interspecific cross between a Lactuca sativa cultivar commonly used in Europe and a wild Lactuca serriola isolate from Northern Europe. The cross has been designed to aid efforts to assess gene flow from cultivated lettuce into the wild in the perspective of genetic modification biosafety. The markers were mapped in nine major and one minor linkage groups spanning 1,266.1 cM, with an average distance of 2.8 cM between adjacent mapped markers. The markers are well distributed throughout the lettuce genome, with limited clustering of different marker types. Seventy-seven of the AFLP markers have been mapped previously and cross-comparison shows that the map from this study corresponds well with the previous linkage map.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Lactuca/genética , Repeticiones de Microsatélite , Técnica del ADN Polimorfo Amplificado Aleatorio , Cromosomas de las Plantas , Cruzamientos Genéticos , ADN de Plantas , Marcadores Genéticos , Genoma de Planta , Elementos de Nucleótido Esparcido Largo , Secuencias Repetidas Terminales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA