Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 16(1): 67-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25419628

RESUMEN

Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/inmunología , FN-kappa B/inmunología , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Neumonía/inmunología , Sobreinfección/inmunología , Animales , Quimiocina CXCL1/inmunología , Susceptibilidad a Enfermedades , Femenino , Interferón Tipo I/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Infecciones por Orthomyxoviridae/enzimología , Infecciones por Orthomyxoviridae/virología , Neumonía/enzimología , Neumonía/virología , ARN/química , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Organismos Libres de Patógenos Específicos , Sobreinfección/enzimología , Sobreinfección/microbiología
2.
Genome Res ; 32(1): 55-70, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903527

RESUMEN

Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC) and immune evasion (i.e., CD274). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression.


Asunto(s)
Alphapapillomavirus , Proteínas Oncogénicas Virales , Neoplasias Orofaríngeas , Alphapapillomavirus/metabolismo , Carcinogénesis , Humanos , Proteínas Oncogénicas Virales/genética , Neoplasias Orofaríngeas/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Integración Viral/genética
3.
Genome Res ; 29(1): 1-17, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30563911

RESUMEN

Human papillomavirus (HPV) is a necessary but insufficient cause of a subset of oral squamous cell carcinomas (OSCCs) that is increasing markedly in frequency. To identify contributory, secondary genetic alterations in these cancers, we used comprehensive genomics methods to compare 149 HPV-positive and 335 HPV-negative OSCC tumor/normal pairs. Different behavioral risk factors underlying the two OSCC types were reflected in distinctive genomic mutational signatures. In HPV-positive OSCCs, the signatures of APOBEC cytosine deaminase editing, associated with anti-viral immunity, were strongly linked to overall mutational burden. In contrast, in HPV-negative OSCCs, T>C substitutions in the sequence context 5'-ATN-3' correlated with tobacco exposure. Universal expression of HPV E6*1 and E7 oncogenes was a sine qua non of HPV-positive OSCCs. Significant enrichment of somatic mutations was confirmed or newly identified in PIK3CA, KMT2D, FGFR3, FBXW7, DDX3X, PTEN, TRAF3, RB1, CYLD, RIPK4, ZNF750, EP300, CASZ1, TAF5, RBL1, IFNGR1, and NFKBIA Of these, many affect host pathways already targeted by HPV oncoproteins, including the p53 and pRB pathways, or disrupt host defenses against viral infections, including interferon (IFN) and nuclear factor kappa B signaling. Frequent copy number changes were associated with concordant changes in gene expression. Chr 11q (including CCND1) and 14q (including DICER1 and AKT1) were recurrently lost in HPV-positive OSCCs, in contrast to their gains in HPV-negative OSCCs. High-ranking variant allele fractions implicated ZNF750, PIK3CA, and EP300 mutations as candidate driver events in HPV-positive cancers. We conclude that virus-host interactions cooperatively shape the unique genetic features of these cancers, distinguishing them from their HPV-negative counterparts.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Proteínas de Neoplasias , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Femenino , Humanos , Masculino , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/virología , Mutación , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas Oncogénicas Virales/biosíntesis , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo
4.
PLoS Genet ; 14(1): e1007179, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364907

RESUMEN

Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression.


Asunto(s)
Regulación Viral de la Expresión Génica , Genes Virales , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidad , Factores de Transcripción/metabolismo , Integración Viral/fisiología , Células Cultivadas , Elementos de Facilitación Genéticos , Células HCT116 , Células HeLa , Células Hep G2 , Interacciones Huésped-Patógeno/genética , Células Endoteliales de la Vena Umbilical Humana , Papillomavirus Humano 16/metabolismo , Humanos , Células K562 , Virus Oncogénicos/genética , Virus Oncogénicos/patogenicidad , Papillomaviridae/genética , Papillomaviridae/metabolismo , Papillomaviridae/patogenicidad , Unión Proteica , Multimerización de Proteína , Regulación hacia Arriba/genética
5.
Circ Res ; 121(8): 923-929, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28790199

RESUMEN

RATIONALE: Duchenne muscular dystrophy is a severe inherited form of muscular dystrophy caused by mutations in the reading frame of the dystrophin gene disrupting its protein expression. Dystrophic cardiomyopathy is a leading cause of death in Duchenne muscular dystrophy patients, and currently no effective treatment exists to halt its progression. Recent advancement in genome editing technologies offers a promising therapeutic approach in restoring dystrophin protein expression. However, the impact of this approach on Duchenne muscular dystrophy cardiac function has yet to be evaluated. Therefore, we assessed the therapeutic efficacy of CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing on dystrophin expression and cardiac function in mdx/Utr+/- mice after a single systemic delivery of recombinant adeno-associated virus. OBJECTIVE: To examine the efficiency and physiological impact of CRISPR-mediated genome editing on cardiac dystrophin expression and function in dystrophic mice. METHODS AND RESULTS: Here, we packaged SaCas9 (clustered regularly interspaced short palindromic repeat-associated 9 from Staphylococcus aureus) and guide RNA constructs into an adeno-associated virus vector and systemically delivered them to mdx/Utr+/- neonates. We showed that CRIPSR-mediated genome editing efficiently excised the mutant exon 23 in dystrophic mice, and immunofluorescence data supported the restoration of dystrophin protein expression in dystrophic cardiac muscles to a level approaching 40%. Moreover, there was a noted restoration in the architecture of cardiac muscle fibers and a reduction in the extent of fibrosis in dystrophin-deficient hearts. The contractility of cardiac papillary muscles was also restored in CRISPR-edited cardiac muscles compared with untreated controls. Furthermore, our targeted deep sequencing results confirmed that our adeno-associated virus-CRISPR/Cas9 strategy was very efficient in deleting the ≈23 kb of intervening genomic sequences. CONCLUSIONS: This study provides evidence for using CRISPR-based genome editing as a potential therapeutic approach for restoring dystrophic cardiomyopathy structurally and functionally.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Cardiomiopatías/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Distrofina/genética , Edición Génica/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Contracción Miocárdica , Músculos Papilares/metabolismo , Animales , Proteínas Asociadas a CRISPR/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Dependovirus/genética , Modelos Animales de Enfermedad , Distrofina/metabolismo , Exones , Fibrosis , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Vectores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Mutación , Músculos Papilares/patología , Músculos Papilares/fisiopatología , Fenotipo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Recuperación de la Función , Utrofina/genética
6.
Nature ; 486(7404): 527-31, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22722832

RESUMEN

Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.


Asunto(s)
Evolución Molecular , Variación Genética/genética , Genoma Humano/genética , Genoma/genética , Pan paniscus/genética , Pan troglodytes/genética , Animales , Elementos Transponibles de ADN/genética , Duplicación de Gen/genética , Genotipo , Humanos , Datos de Secuencia Molecular , Fenotipo , Filogenia , Especificidad de la Especie
7.
Proc Natl Acad Sci U S A ; 112(19): 6128-33, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918370

RESUMEN

The [A] allele of SNP rs965513 in 9q22 has been consistently shown to be highly associated with increased papillary thyroid cancer (PTC) risk with an odds ratio of ∼1.8 as determined by genome-wide association studies, yet the molecular mechanisms remain poorly understood. Previously, we noted that the expression of two genes in the region, forkhead box E1 (FOXE1) and PTC susceptibility candidate 2 (PTCSC2), is regulated by rs965513 in unaffected thyroid tissue, but the underlying mechanisms were not elucidated. Here, we fine-mapped the 9q22 region in PTC and controls and detected an ∼33-kb linkage disequilibrium block (containing the lead SNP rs965513) that significantly associates with PTC risk. Chromatin characteristics and regulatory element signatures in this block disclosed at least three regulatory elements functioning as enhancers. These enhancers harbor at least four SNPs (rs7864322, rs12352658, rs7847449, and rs10759944) that serve as functional variants. The variant genotypes are associated with differential enhancer activities and/or transcription factor binding activities. Using the chromosome conformation capture methodology, long-range looping interactions of these elements with the promoter region shared by FOXE1 and PTCSC2 in a human papillary thyroid carcinoma cell line (KTC-1) and unaffected thyroid tissue were found. Our results suggest that multiple variants coinherited with the lead SNP and located in long-range enhancers are involved in the transcriptional regulation of FOXE1 and PTCSC2 expression. These results explain the mechanism by which the risk allele of rs965513 predisposes to thyroid cancer.


Asunto(s)
Carcinoma/genética , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Neoplasias de la Tiroides/genética , Alelos , Carcinoma Papilar , Línea Celular Tumoral , Cromatina/química , Inmunoprecipitación de Cromatina , Factores de Transcripción Forkhead/genética , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Histonas/química , Humanos , Oportunidad Relativa , Penetrancia , Cáncer Papilar Tiroideo
8.
Genome Res ; 24(2): 185-99, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24201445

RESUMEN

Genomic instability is a hallmark of human cancers, including the 5% caused by human papillomavirus (HPV). Here we report a striking association between HPV integration and adjacent host genomic structural variation in human cancer cell lines and primary tumors. Whole-genome sequencing revealed HPV integrants flanking and bridging extensive host genomic amplifications and rearrangements, including deletions, inversions, and chromosomal translocations. We present a model of "looping" by which HPV integrant-mediated DNA replication and recombination may result in viral-host DNA concatemers, frequently disrupting genes involved in oncogenesis and amplifying HPV oncogenes E6 and E7. Our high-resolution results shed new light on a catastrophic process, distinct from chromothripsis and other mutational processes, by which HPV directly promotes genomic instability.


Asunto(s)
Replicación del ADN/genética , Inestabilidad Genómica , Papillomavirus Humano 16/genética , Neoplasias/genética , ADN Viral/genética , Femenino , Papillomavirus Humano 16/crecimiento & desarrollo , Humanos , Masculino , Neoplasias/clasificación , Neoplasias/patología , Neoplasias/virología , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Integración Viral/genética
9.
Nucleic Acids Res ; 42(7): 4546-62, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24493738

RESUMEN

Between 6 and 30% of human and mouse transcripts are initiated from transposable elements. However, the promoters driving such transcriptional activity are mostly unknown. We experimentally characterized an antisense (AS) promoter in mouse L1 retrotransposons for the first time, oriented antiparallel to the coding strand of L1 open reading frame-1. We found that AS transcription is mediated by RNA polymerase II. Rapid amplification of cDNA ends cloning mapped transcription start sites adjacent to the AS promoter. We identified >100 novel fusion transcripts, of which many were conserved across divergent mouse lineages, suggesting conservation of potential functions. To evaluate whether AS L1 transcription could regulate L1 retrotransposition, we replaced portions of native open reading frame-1 in donor elements by synonymously recoded sequences. The resulting L1 elements lacked AS promoter activity and retrotransposed more frequently than endogenous L1s. Overexpression of AS L1 transcripts also reduced L1 retrotransposition. This suppression of retrotransposition was largely independent of Dicer. Our experiments shed new light on how AS fusion transcripts are initiated from endogenous L1 elements across the mouse genome. Such AS transcription can contribute substantially both to natural transcriptional variation and to endogenous regulation of L1 retrotransposition.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Regiones Promotoras Genéticas , ARN sin Sentido/biosíntesis , Proteínas de Unión al ARN/genética , Animales , Secuencia de Bases , Línea Celular , Humanos , Ratones , Datos de Secuencia Molecular , ARN Polimerasa II/metabolismo , Ribonucleasa III/metabolismo , Sitio de Iniciación de la Transcripción
10.
Genome Res ; 22(5): 870-84, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22367191

RESUMEN

Endogenous retrotransposons have caused extensive genomic variation within mammalian species, but the functional implications of such mobilization are mostly unknown. We mapped thousands of endogenous retrovirus (ERV) germline integrants in highly divergent, previously unsequenced mouse lineages, facilitating a comparison of gene expression in the presence or absence of local insertions. Polymorphic ERVs occur relatively infrequently in gene introns and are particularly depleted from genes involved in embryogenesis or that are highly expressed in embryonic stem cells. Their genomic distribution implies ongoing negative selection due to deleterious effects on gene expression and function. A polymorphic, intronic ERV at Slc15a2 triggers up to 49-fold increases in premature transcriptional termination and up to 39-fold reductions in full-length transcripts in adult mouse tissues, thereby disrupting protein expression and functional activity. Prematurely truncated transcripts also occur at Polr1a, Spon1, and up to ∼5% of other genes when intronic ERV polymorphisms are present. Analysis of expression quantitative trait loci (eQTLs) in recombinant BxD mouse strains demonstrated very strong genetic associations between the polymorphic ERV in cis and disrupted transcript levels. Premature polyadenylation is triggered at genomic distances up to >12.5 kb upstream of the ERV, both in cis and between alleles. The parent of origin of the ERV is associated with variable expression of nonterminated transcripts and differential DNA methylation at its 5'-long terminal repeat. This study defines an unexpectedly strong functional impact of ERVs in disrupting gene transcription at a distance and demonstrates that ongoing retrotransposition can contribute significantly to natural phenotypic diversity.


Asunto(s)
Retrovirus Endógenos/genética , Regulación de la Expresión Génica , Transcripción Genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Metilación de ADN , Femenino , Variación Genética , Heterocigoto , Intrones , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Polimorfismo Genético , Biosíntesis de Proteínas/genética , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Simportadores/genética , Simportadores/metabolismo , Secuencias Repetidas Terminales
11.
Bioessays ; 35(4): 397-407, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23319453

RESUMEN

In this essay, we discuss new insights into the wide-ranging impacts of mammalian transposable elements (TE) on gene expression and function. Nearly half of each mammalian genome is comprised of these mobile, repetitive elements. While most TEs are ancient relics, certain classes can move from one chromosomal location to another even now. Indeed, striking recent data show that extensive transposition occurs not only in the germline over evolutionary time, but also in developing somatic tissues and particular human cancers. While occasional germline TE insertions may contribute to genetic variation, many other, similar TEs appear to have little or no impact on neighboring genes. However, the effects of somatic insertions on gene expression and function remain almost completely unknown. We present a conceptual framework to understand how the ages, allele frequencies, molecular structures, and especially the genomic context of mammalian TEs each can influence their various possible functional consequences.


Asunto(s)
Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica , Variación Genética , Alelos , Animales , Evolución Molecular , Expresión Génica , Frecuencia de los Genes , Humanos , Neoplasias/genética
12.
Oral Oncol ; 140: 106372, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37004423

RESUMEN

OBJECTIVES: Somatic mutations may predict prognosis, therapeutic response, or cancer progression. We evaluated targeted sequencing of oral rinse samples (ORS) for non-invasive mutational profiling of oral squamous cell carcinomas (OSCC). MATERIALS AND METHODS: A custom hybrid capture panel targeting 42 frequently mutated genes in OSCC was used to identify DNA sequence variants in matched ORS and fresh-frozen tumors from 120 newly-diagnosed patients. Receiver operating characteristic (ROC) curves determined the optimal variant allele fraction (VAF) cutoff for variant discrimination in ORS. Behavioral, clinical, and analytical factors were evaluated for impacts on assay performance. RESULTS: Half of tumors involved oral tongue (50 %), and a majority were T1-T2 tumor stage (55 %). Median depth of sequencing coverage was 260X for OSCC and 1,563X for ORS. Frequencies of single nucleotide variants (SNVs) at highly mutated genes (including TP53, FAT1, HRAS, NOTCH1, CDKN2A, CASP8, NFE2L2, and PIK3CA) in OSCC were highly correlated with TCGA data (R = 0.96, p = 2.5E-22). An ROC curve with area-under-the-curve (AUC) of 0.80 showed that, at an optimal VAF cutoff of 0.10 %, ORS provided 76 % sensitivity, 96 % specificity, but precision of only 2.6E-4. At this VAF cutoff, 206 of 270 SNVs in OSCC were detected in matched ORS. Sensitivity varied by patient, T stage and target gene. Neither downsampled ORS as matched control nor a naïve Bayesian classifier adjusting for sequencing bias appreciably improved assay performance. CONCLUSION: Targeted sequencing of ORS provides moderate assay performance for noninvasive detection of SNVs in OSCC. Our findings strongly rationalize further clinical and laboratory optimization of this assay, including strategies to improve precision.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Teorema de Bayes , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/patología , Mutación , Genómica
13.
Cancer Discov ; 13(4): 910-927, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36715691

RESUMEN

The human papillomavirus (HPV) genome is integrated into host DNA in most HPV-positive cancers, but the consequences for chromosomal integrity are unknown. Continuous long-read sequencing of oropharyngeal cancers and cancer cell lines identified a previously undescribed form of structural variation, "heterocateny," characterized by diverse, interrelated, and repetitive patterns of concatemerized virus and host DNA segments within a cancer. Unique breakpoints shared across structural variants facilitated stepwise reconstruction of their evolution from a common molecular ancestor. This analysis revealed that virus and virus-host concatemers are unstable and, upon insertion into and excision from chromosomes, facilitate capture, amplification, and recombination of host DNA and chromosomal rearrangements. Evidence of heterocateny was detected in extrachromosomal and intrachromosomal DNA. These findings indicate that heterocateny is driven by the dynamic, aberrant replication and recombination of an oncogenic DNA virus, thereby extending known consequences of HPV integration to include promotion of intratumoral heterogeneity and clonal evolution. SIGNIFICANCE: Long-read sequencing of HPV-positive cancers revealed "heterocateny," a previously unreported form of genomic structural variation characterized by heterogeneous, interrelated, and repetitive genomic rearrangements within a tumor. Heterocateny is driven by unstable concatemerized HPV genomes, which facilitate capture, rearrangement, and amplification of host DNA, and promotes intratumoral heterogeneity and clonal evolution. See related commentary by McBride and White, p. 814. This article is highlighted in the In This Issue feature, p. 799.


Asunto(s)
Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Virus del Papiloma Humano , Reordenamiento Génico , Evolución Clonal/genética , Integración Viral/genética , Papillomaviridae/genética
14.
NPJ Precis Oncol ; 7(1): 95, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723227

RESUMEN

Multiple myeloma (MM) is accompanied by alterations to the normal plasma cell (PC) proteome, leading to changes to the tumor microenvironment and disease progression. There is a great need for understanding the consequences that lead to MM progression and for the discovery of new biomarkers that can aid clinical diagnostics and serve as targets for therapeutics. This study demonstrates the applicability of utilizing the single-cell high-definition liquid biopsy assay (HDSCA) and imaging mass cytometry to characterize the proteomic profile of myeloma. In our study, we analyzed ~87,000 cells from seven patient samples (bone marrow and peripheral blood) across the myeloma disease spectrum and utilized our multiplexed panel to characterize the expression of clinical markers for PC classification, additional potential therapeutic targets, and the tumor microenvironment cells. Our analysis showed BCMA, ICAM3 (CD50), CD221, and CS1 (SLAMF7) as the most abundantly expressed markers on PCs across all myeloma stages, with BCMA, ICAM3, and CD221 having significantly higher expression levels on disease versus precursor PCs. Additionally, we identify significantly elevated levels of expression for CD74, MUM1, CD229, CD44, IGLL5, Cyclin D1, UBA52, and CD317 on PCs from overt disease conditions compared to those from precursor states.

15.
Cancer Cell ; 41(6): 1032-1047.e4, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37311413

RESUMEN

Multiple myeloma remains an incurable disease, and the cellular and molecular evolution from precursor conditions, including monoclonal gammopathy of undetermined significance and smoldering multiple myeloma, is incompletely understood. Here, we combine single-cell RNA and B cell receptor sequencing from fifty-two patients with myeloma precursors in comparison with myeloma and normal donors. Our comprehensive analysis reveals early genomic drivers of malignant transformation, distinct transcriptional features, and divergent clonal expansion in hyperdiploid versus non-hyperdiploid samples. Additionally, we observe intra-patient heterogeneity with potential therapeutic implications and identify distinct patterns of evolution from myeloma precursor disease to myeloma. We also demonstrate distinctive characteristics of the microenvironment associated with specific genomic changes in myeloma cells. These findings add to our knowledge about myeloma precursor disease progression, providing valuable insights into patient risk stratification, biomarker discovery, and possible clinical applications.


Asunto(s)
Investigación Biomédica , Mieloma Múltiple , Mieloma Múltiple Quiescente , Humanos , Mieloma Múltiple/genética , Aneuploidia , Progresión de la Enfermedad , Microambiente Tumoral/genética
16.
Dev Biol ; 355(1): 21-31, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21549111

RESUMEN

The severity of numerous developmental abnormalities can vary widely despite shared genetic causes. Mice deficient in Twisted gastrulation (Twsg1(-/-)) display such phenotypic variation, developing a wide range of craniofacial malformations on an isogenic C57BL/6 strain background. To examine the molecular basis for this reduced penetrance and variable expressivity, we used exon microarrays to analyze gene expression in mandibular arches from several distinct, morphologically defined classes of Twsg1(-/-) and wild type (WT) embryos. Hierarchical clustering analysis of transcript levels identified numerous differentially expressed genes, clearly distinguishing severely affected and unaffected Twsg1(-/-) mutants from WT embryos. Several genes that play well-known roles in craniofacial development were upregulated in unaffected Twsg1(-/-) mutant embryos, suggesting that they may compensate for the loss of TWSG1. Imprinted genes were overrepresented among genes that were differentially expressed particularly between affected and unaffected mutants. The most severely affected embryos demonstrated increased p53 signaling and increased expression of its target, Trp53inp1. The frequency of craniofacial defects significantly decreased with a reduction of p53 gene dosage from 44% in Twsg1(-/-)p53(+/+) pups (N=675) to 30% in Twsg1(-/-)p53(+/-) (N=47, p=0.04) and 15% in Twsg1(-/-)p53(-/-) littermates (N=39, p=0.001). In summary, these results demonstrate that phenotypic variability in Twsg1(-/-) mice is associated with differential expression of certain developmentally regulated genes, and that craniofacial defects can be partially rescued by reduced p53 levels. We postulate that variable responses to stress may contribute to variable craniofacial phenotypes by triggering differential expression of genes and variable cellular apoptosis.


Asunto(s)
Anomalías Craneofaciales/genética , Proteínas/genética , Animales , Exones , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
17.
Nucleic Acids Res ; 38(Database issue): D600-6, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19933259

RESUMEN

MouseIndelDB is an integrated database resource containing thousands of previously unreported mouse genomic indel (insertion and deletion) polymorphisms ranging from approximately 100 nt to 10 Kb in size. The database currently includes polymorphisms identified from our alignment of 26 million whole-genome shotgun sequence traces from four laboratory mouse strains mapped against the reference C57BL/6J genome using GMAP. They can be queried on a local level by chromosomal coordinates, nearby gene names or other genomic feature identifiers, or in bulk format using categories including mouse strain(s), class of polymorphism(s) and chromosome number. The results of such queries are presented either as a custom track on the UCSC mouse genome browser or in tabular format. We anticipate that the MouseIndelDB database will be widely useful for research in mammalian genetics, genomics, and evolutionary biology. Access to the MouseIndelDB database is freely available at: http://variation.osu.edu/.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Bases de Datos de Ácidos Nucleicos , Polimorfismo Genético , Animales , Biología Computacional/tendencias , Bases de Datos de Proteínas , Genoma , Almacenamiento y Recuperación de la Información/métodos , Internet , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Programas Informáticos , Especificidad de la Especie , Interfaz Usuario-Computador
18.
Cancer Lett ; 476: 23-33, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-31958486

RESUMEN

Human papillomavirus (HPV) insertions in cancer genomes have been linked to various forms of focal genomic instability and altered expression of neighboring genes. Here we tested the hypothesis that investigation of HPV insertions in a head and neck cancer squamous cell carcinoma (HNSCC) cell line would identify targetable driver genes contributing to oncogenesis of other HNSCC. In the cell line UPCI:SCC090 HPV16 integration amplified the PIM1 serine/threonine kinase gene ~16-fold, thereby increasing transcript and protein levels. We used genetic and pharmacological approaches to inhibit PIM kinases in this and other HNSCC cell lines. Knockdown of PIM1 transcripts by transfected short hairpin RNAs reduced UPCI:SCC090 viability. CRISPR/Cas9-mediated mutagenesis of PIM1 caused cell cycle arrest and apoptosis. Pharmacological inhibition of PIM family kinases decreased growth of UPCI:SCC090 and additional HNSCC cell lines in vitro and a xenograft UPCI:SCC090 model in vivo. Based on established interactions between intracellular signaling pathways and relatively high levels of gene expression in almost all HNSCC, we also evaluated combinations of PIM kinase and epidermal growth factor receptor (EGFR) inhibitors. Dual inhibition of these pathways resulted in supra-additive cell death. These data support clinical testing of PIM inhibitors alone or in combination in HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello/genética , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/complicaciones , Proteínas Proto-Oncogénicas c-pim-1/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Integración Viral/genética , Animales , Apoptosis , Proliferación Celular , Femenino , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/virología , Humanos , Ratones , Ratones Desnudos , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Pronóstico , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Clin Cancer Res ; 14(21): 7143-50, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18981014

RESUMEN

PURPOSE: Oral human papillomavirus (HPV) infection is a risk factor for head and neck squamous cell carcinoma (HNSCC), and is a concern for patients with HPV-positive HNSCC and their partners. The prevalence of oral HPV infection before and after cancer therapy was investigated among patients with HPV16-positive and HPV16-negative HNSCC. EXPERIMENTAL DESIGN: Serial oral rinse samples (ORS) were collected from a cohort of 135 HNSCC cases as frequently as every 3 months for up to 3 years. Tumor HPV status was determined by HPV16 in situ hybridization. HPV was detected in ORS by consensus PCR and line blot hybridization. The HPV16 variants in positive oral rinse-tumor pairs were determined by sequencing. The odds of oral HPV infection among HPV16-positive and HPV16-negative cases were compared by use of generalized estimating equations. RESULTS: Patients were followed for a median of 21 months and provided a median of 4 samples. Forty-four of 135 patients had HPV16-positive tumors. HPV16-positive cases were more likely than HPV16-negative cases to have an oral HPV infection detected before (odds ratio, 8.6; 95% confidence interval, 3.5-21) and after therapy (OR, 2.9; 95% confidence interval, 1.1-7.4). Oral infections by HPV16 and other high-risk, but not low-risk, types were more common among HPV16-positive cases both before and after therapy. Most HPV16 variants in ORS were European, unique, and identical to that in the tumor. Persistence of a type-specific oral infection was demonstrable for as long as 5 years. CONCLUSION: Oral high-risk HPV infections are more frequent among patients with HPV16-positive than HPV16-negative HNSCC, consistent with a behavioral and/or biological disposition to infection.


Asunto(s)
Carcinoma de Células Escamosas/virología , Neoplasias de Cabeza y Cuello/virología , Papillomavirus Humano 16 , Enfermedades de la Boca/virología , Infecciones por Papillomavirus/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , ADN Viral/análisis , Femenino , Papillomavirus Humano 16/genética , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Enfermedades de la Boca/complicaciones , Enfermedades de la Boca/epidemiología , Infecciones por Papillomavirus/epidemiología , Riesgo
20.
Thyroid ; 29(7): 946-955, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30957677

RESUMEN

Background: Familial non-medullary thyroid cancer (NMTC) accounts for a relatively small proportion of thyroid cancer cases, but it displays strong genetic predisposition. So far, only a few NMTC susceptible genes and low-penetrance variants contributing to NMTC have been described. This study aimed to identify rare germline variants that may predispose individuals to NMTC by sequencing a cohort of 17 NMTC families. Methods: Whole-genome sequencing and genome-wide linkage analysis were performed in 17 NMTC families. MendelScan and BasePlayer were applied to screen germline variants followed by customized filtering. The remaining candidate variants were subsequently validated by Sanger sequencing. A panel of 277 known cancer predisposition genes was also screened in these families. Results: A total of 41 rare coding candidate variants in 40 genes identified by whole-genome sequencing are reported, including 24 missense, five frameshift, five splice change, and seven nonsense variants. Sanger sequencing confirmed all 41 rare variants and proved their co-segregation with NMTC in the extended pedigrees. In silico functional analysis of the candidate genes using Ingenuity Pathway Analysis showed that cancer was the top category of "Diseases and Disorders." Additionally, a targeted search displayed six variants in known cancer predisposition genes, including one frameshift variant and five missense variants. Conclusions: The data identify rare germline variants that may play important roles in NMTC predisposition. It is proposed that in future research including functional characterization, these variants and genes be considered primary candidates for thyroid cancer predisposition.


Asunto(s)
Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Anciano , Anciano de 80 o más Años , Carcinoma Papilar/genética , Simulación por Computador , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal , Humanos , Masculino , Persona de Mediana Edad , Linaje , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA